skip to navigation skip to content
- Select training provider - (Department of Chemistry )

Department of Chemistry

Department of Chemistry course timetable

Show:

Wed 9 Oct 2019 – Fri 15 Nov 2019

Now Today



October 2019

Wed 9
Chemistry: SF5 Introduction to Demonstrating Finished 11:00 - 12:30 Part 1A Lab

We view demonstrating to undergraduate students as a key part of postgraduate education.

Demonstrating is compulsory for 1st and 2d year postgraduate students with the right background (we do not wish to place anybody in the undergraduate laboratories for whom this would be inappropriate).

Demonstrating is also open to all MPhil, 3rd/4th year graduate students and postdoctoral researchers.

Chemistry: IS1 Library Orientation Finished 14:00 - 14:30 Library

This is a compulsory session which introduces new graduate students to the Department of Chemistry Library and its place within the wider Cambridge University Library system. It provides general information on what is available, where it is, and how to get it. Print and online resources are included.

You must choose one session out of the 9 sessions available.

Thu 10
Chemistry: FS29 Fortran 90/95 for Physical Scientists new (1 of 4) Finished 10:00 - 11:00 G30

You will be introduced to Fortran 90/95 and provided with materials which cover the basics of Fortran 90/95 with an emphasis on applications in the physical sciences. The key concepts of loops, functions, subroutines, modules, and other standard Fortran syntax will be introduced sequentially.

Mon 14
Chemistry: Philosophy for Chemists (1 of 3) Finished 12:00 - 13:00 Unilever Lecture Theatre

Science is a striking, successful and powerful feature of contemporary human cultures: it has transformed lives, enabled great technological feats and often revealed the world to be a much stranger place than appearances suggest. But what is science, really, and how and why has it been so successful? This 3 week course aims to introduce graduate students to some main themes in the philosophy of science generally, and the philosophy of chemistry in particular.

Lecture 1. What Is Science?

What makes science scientific? Is there something distinctive about scientific investigation which distinguishes it from other things humans do? Does science give us infallible knowledge? Or at least the kind of knowledge that always gets better? These questions will be discussed in relation to the views of some well-known philosophers of science including Karl Popper and Thomas Kuhn.

Lecture 2. Measurement

Measurement is the foundation of any quantitative empirical science. We make all sorts of measurements routinely in the lab, but there are actually deep difficulties in knowing if our instruments and procedures correctly measure what we intend to measure. The epistemological issues involved here will be discussed through various scientific examples, including temperature and pH.

Lecture 3. Reductionism

Does all science ultimately boil down to fundamental physics? This is a pertinent issue to all areas of science, but an urgent one especially for chemistry. Considering the success of quantum chemistry one might imagine that chemistry is just applied physics, but the matter is not so simple. Looking at the longer history of the attempts to reduce chemistry to physics will also be instructive.

Tue 15

This session introduces new undergraduate Chemistry students to the Department of Chemistry Library and its place within the wider Cambridge University Library system. It provides general information on what is available, where it is, and how to get it. Print and online resources are included.

Wed 16

This session is compulsory for all experimentalists to attend and will provide useful information regarding analytical facilities at this Department including NMR, mass spectrometry and X-ray crystallography. Short descriptions will be given of all available instruments, as well as explain the procedures for preparing/submitting samples for the analysis will also be discussed.

This session introduces new undergraduate Chemistry students to the Department of Chemistry Library and its place within the wider Cambridge University Library system. It provides general information on what is available, where it is, and how to get it. Print and online resources are included.

The course will introduce the general methodology of model development, including techniques for model identification and parameter estimation. The idea of model-based design of experiments will be introduced and linked to parameter estimation. Tools for model development and MBDoE will also be introduced.

Thu 17
Chemistry: FS29 Fortran 90/95 for Physical Scientists new (2 of 4) Finished 10:00 - 11:00 G30

You will be introduced to Fortran 90/95 and provided with materials which cover the basics of Fortran 90/95 with an emphasis on applications in the physical sciences. The key concepts of loops, functions, subroutines, modules, and other standard Fortran syntax will be introduced sequentially.

This session introduces new undergraduate Chemistry students to the Department of Chemistry Library and its place within the wider Cambridge University Library system. It provides general information on what is available, where it is, and how to get it. Print and online resources are included.

The course will introduce the general methodology of model development, including techniques for model identification and parameter estimation. The idea of model-based design of experiments will be introduced and linked to parameter estimation. Tools for model development and MBDoE will also be introduced.

Mon 21
Chemistry: Philosophy for Chemists (2 of 3) Finished 12:00 - 13:00 Unilever Lecture Theatre

Science is a striking, successful and powerful feature of contemporary human cultures: it has transformed lives, enabled great technological feats and often revealed the world to be a much stranger place than appearances suggest. But what is science, really, and how and why has it been so successful? This 3 week course aims to introduce graduate students to some main themes in the philosophy of science generally, and the philosophy of chemistry in particular.

Lecture 1. What Is Science?

What makes science scientific? Is there something distinctive about scientific investigation which distinguishes it from other things humans do? Does science give us infallible knowledge? Or at least the kind of knowledge that always gets better? These questions will be discussed in relation to the views of some well-known philosophers of science including Karl Popper and Thomas Kuhn.

Lecture 2. Measurement

Measurement is the foundation of any quantitative empirical science. We make all sorts of measurements routinely in the lab, but there are actually deep difficulties in knowing if our instruments and procedures correctly measure what we intend to measure. The epistemological issues involved here will be discussed through various scientific examples, including temperature and pH.

Lecture 3. Reductionism

Does all science ultimately boil down to fundamental physics? This is a pertinent issue to all areas of science, but an urgent one especially for chemistry. Considering the success of quantum chemistry one might imagine that chemistry is just applied physics, but the matter is not so simple. Looking at the longer history of the attempts to reduce chemistry to physics will also be instructive.

Tue 22

This session introduces new undergraduate Chemistry students to the Department of Chemistry Library and its place within the wider Cambridge University Library system. It provides general information on what is available, where it is, and how to get it. Print and online resources are included.

Wed 23

This session introduces new undergraduate Chemistry students to the Department of Chemistry Library and its place within the wider Cambridge University Library system. It provides general information on what is available, where it is, and how to get it. Print and online resources are included.

Thu 24
Chemistry: FS29 Fortran 90/95 for Physical Scientists new (3 of 4) Finished 10:00 - 11:00 G30

You will be introduced to Fortran 90/95 and provided with materials which cover the basics of Fortran 90/95 with an emphasis on applications in the physical sciences. The key concepts of loops, functions, subroutines, modules, and other standard Fortran syntax will be introduced sequentially.

Mon 28
Chemistry: Philosophy for Chemists (3 of 3) Finished 12:00 - 13:00 Unilever Lecture Theatre

Science is a striking, successful and powerful feature of contemporary human cultures: it has transformed lives, enabled great technological feats and often revealed the world to be a much stranger place than appearances suggest. But what is science, really, and how and why has it been so successful? This 3 week course aims to introduce graduate students to some main themes in the philosophy of science generally, and the philosophy of chemistry in particular.

Lecture 1. What Is Science?

What makes science scientific? Is there something distinctive about scientific investigation which distinguishes it from other things humans do? Does science give us infallible knowledge? Or at least the kind of knowledge that always gets better? These questions will be discussed in relation to the views of some well-known philosophers of science including Karl Popper and Thomas Kuhn.

Lecture 2. Measurement

Measurement is the foundation of any quantitative empirical science. We make all sorts of measurements routinely in the lab, but there are actually deep difficulties in knowing if our instruments and procedures correctly measure what we intend to measure. The epistemological issues involved here will be discussed through various scientific examples, including temperature and pH.

Lecture 3. Reductionism

Does all science ultimately boil down to fundamental physics? This is a pertinent issue to all areas of science, but an urgent one especially for chemistry. Considering the success of quantum chemistry one might imagine that chemistry is just applied physics, but the matter is not so simple. Looking at the longer history of the attempts to reduce chemistry to physics will also be instructive.

Tue 29
run new Finished 09:30 - 10:00 Scott Polar LT

« Description not available »

Thu 31
Chemistry: FS29 Fortran 90/95 for Physical Scientists new (4 of 4) Finished 10:00 - 11:00 G30

You will be introduced to Fortran 90/95 and provided with materials which cover the basics of Fortran 90/95 with an emphasis on applications in the physical sciences. The key concepts of loops, functions, subroutines, modules, and other standard Fortran syntax will be introduced sequentially.

November 2019

Mon 4
Chemistry: CT2 Fundamentals of Mass Spectrometry Finished 10:00 - 12:00 Department of Chemistry, Unilever Lecture Theatre

Mass spectrometry is one of the main analytical-chemical techniques used to characterise organic compounds and their elemental composition. This overview will discuss some of the most frequently used mass spectrometry techniques and their specific strengths (e.g., quadrupole, time-of-flight and high-resolution MS), as well as ionisation techniques such as electron ionisation (EI), electrospray ionisation (ESI), matrix assisted laser desorption/ionisation (MALDI) and MS techniques to quantify metal concentrations (e.g. inductively coupled plasma MS, ICP-MS) and isotope ratios.

Thu 7
Chemistry: CT3 An Introduction to Mass Spec Processing Finished 14:00 - 16:00 Unilever Lecture Theatre

This training will consist of two sessions, introducing you to use of both Water's MS software and MassLynx and Bruker and Thermo's MS software: MALDI and Orbitrap.

Fri 8
Chemistry: CT4 Solution Phase NMR Spectroscopy Finished 14:00 - 17:00 Department of Chemistry, Unilever Lecture Theatre

Nuclear Magnetic Resonance (NMR) spectroscopy represents one of the most informative and widely used techniques for characterisation of compounds in the solution and solid state. Most researchers barely tap into the potential of the experiments that are available on the instruments in the Department, so in this short course we will explore the basic concepts that will allow you to make the most of these powerful techniques for routine analysis, as well as introducing more specialised experiments.

Mon 11
Chemistry: CT5 Solid State NMR Spectroscopy Finished 14:00 - 16:00 Unilever Lecture Theatre

This course will provide an idea of what kind of scientific problems can be solved by solid state NMR. It will cover how NMR can be used to study molecular structure, nanostructure and dynamics in the solid state, including heterogeneous solids, such as polymers, MOFs, energy-storage and biological materials This course will build on a basic working knowledge of solution-state NMR for 1H and 13C, i.e. undergraduate level NMR. In order to highlight the utility of this technique, some materials based research using solid state NMR will also be covered

Tue 12
Chemistry: CT6 An Introduction to NMR Processing with TopSpin Finished 10:00 - 11:30 Unilever Lecture Theatre

The session will also give an insight into some of the more advanced features of the software, and how to optimise your workflow.

Chemistry: CT7 X-Ray Crystallography (1 of 2) Finished 14:00 - 15:00 Unilever Lecture Theatre

These lectures will introduce the basics of crystallography and diffraction, assuming no prior knowledge. The aim is to provide an overview that will inspire and serve as a basis for researchers to use the Department’s single-crystal and/or powder X-ray diffraction facilities or to appreciate more effectively results obtained through the Department’s crystallographic services. The final lecture will be devoted to searching and visualising crystallographic data using the Cambridge Structural Database system.

Fri 15
Chemistry: FS13 LaTex Finished 09:00 - 13:00 G30

This hands-on course teaches the basics of Latex including syntax, lists, maths equations, basic chemical equations, tables, graphical figures and internal and external referencing. We also learn how to link documents to help manage large projects. The course manual is presented in the style of a thesis and since you also receive the source code you also receive a template for a thesis.