SSRMC Training Programme 201920
(Wed 9 Oct 2019  Wed 8 Apr 2020)
[ Back to start of the programme ]
Monday 2 March 2020
09:00 
Event History Analysis
Finished
This course offers an introduction to event history analysis, which is a tool used for analyzing the occurrence and timing of events. Typical examples are life course transitions such as the transition to parenthood and partnership formation processes, labour market processes such as job promotions, mortality, and transitions to and from sickness and disability. The researcher may be interested in examining how the rate of a particular event varies over time or with individual characteristics, social conditions, or other factors. Event History Analysis lets the researcher handle censoring and truncation, include timevarying independent variables, account for unobserved heterogeneity (frailty), and so on. The course will rely on Stata as the main computing tool, but users of other statistical software could still benefit from the course. The course is taught through both lectures and lab sessions. 
11:00 
Factor Analysis
Finished
This module introduces the statistical techniques of Exploratory and Confirmatory Factor Analyses. Exploratory Factor Analysis (EFA) is used to uncover the latent structure (dimensions) of a set of variables. It reduces the attribute space from a larger number of variables to a smaller number of factors. Confirmatory Factor Analysis (CFA) examines whether collected data correspond to a model of what the data are meant to measure. STATA will be introduced as a powerful tool to conduct confirmatory factor analysis. A brief introduction will be given to confirmatory factor analysis and structural equation modelling.

14:00 
Public Policy Analysis
Finished
The analysis of policy depends on many disciplines and techniques and so is difficult for many researchers to access. This module provides a mixed perspective on policy analysis, taking both an academic and a practitioner perspective. This is because the same tools and techniques can be used in academic research on policy options and change as those used in practice in a policy environment. This course is provided as three 2 hour sessions delivered as a mix of lectures and seminars. No direct analysis work will be done in the sessions themselves, but some sample data and questions will be provided for students who wish to take the material into practice. 
Event History Analysis
Finished
This course offers an introduction to event history analysis, which is a tool used for analyzing the occurrence and timing of events. Typical examples are life course transitions such as the transition to parenthood and partnership formation processes, labour market processes such as job promotions, mortality, and transitions to and from sickness and disability. The researcher may be interested in examining how the rate of a particular event varies over time or with individual characteristics, social conditions, or other factors. Event History Analysis lets the researcher handle censoring and truncation, include timevarying independent variables, account for unobserved heterogeneity (frailty), and so on. The course will rely on Stata as the main computing tool, but users of other statistical software could still benefit from the course. The course is taught through both lectures and lab sessions. 

Factor Analysis
Finished
This module introduces the statistical techniques of Exploratory and Confirmatory Factor Analyses. Exploratory Factor Analysis (EFA) is used to uncover the latent structure (dimensions) of a set of variables. It reduces the attribute space from a larger number of variables to a smaller number of factors. Confirmatory Factor Analysis (CFA) examines whether collected data correspond to a model of what the data are meant to measure. STATA will be introduced as a powerful tool to conduct confirmatory factor analysis. A brief introduction will be given to confirmatory factor analysis and structural equation modelling.

Tuesday 3 March 2020
14:00 
Survey Research and Design
Finished
The module aims to provide students with an introduction to and overview of survey methods and its uses and limitations. It will introduce students both to some of the main theoretical issues involved in survey research (such as survey sampling, nonresponse and question wording) and to practicalities of the design and analysis of surveys. The module consists of three threehour sessions, split between lectures and practical exercises. At the start of the module, the theoretical aspects of designing surveys will feature more, and topics covered include: the background to and history of survey research (with examples mostly drawn from political polling); an overview of the issues involved in analysing data from surveys conducted by others and some practical advice on how to evaluate such data; issues of sampling, nonresponse and different ways of doing surveys; issues related to questionnaire design (question wording, answer options, etc.) and ethical considerations. These lectures are relevant for all students taking the module, irrespective of whether they will conduct surveys themselves or are 'passive' users of survey results.
As the module progresses the practical aspects of designing surveys will feature more, particularly issues directly related to questionnaires (and less on issues of sampling), such as the wording of questions, the order of questions, and the use of different answer options. Most of the exercises will be provided by the instructors, but there will also be opportunities for students to bring in examples of surveys they would like to develop for their own research (and participants in the sessions may be asked to answer each other's surveys as a pilot test). We encourage all students registered for the module to attend the more practical sessions, but it will be of most direct relevance to those who are using, or plan to use, surveys in their research. 
Wednesday 4 March 2020
12:00 
A Critical Analysis of Null Hypothesis Testing and its Alternatives (Including Bayesian Analysis)
Finished
This course will provide a detailed critique of the methods and philosophy of the Null Hypothesis Significance Testing (NHST) approach to statistics which is currently dominant in social and biomedical science. We will briefly contrast NHST with alternatives, especially with Bayesian methods. We will use some computer code (Matlab and R) to demonstrate some issues. However, we will focus on the big picture rather on the implementation of specific procedures. 
14:00 
The challenge of causal inference is ubiquitous in social science. Nearly every research project fundamentally is about causes and effects. This introductory session will:
The emphasis is on setting out applications of each approach, along with pros and cons, so that participants understand when a particular design may be more or less suitable to a research problem. 
Monday 9 March 2020
09:00 
Meta Analysis
Finished
In this module students will be introduced to metaanalysis, a powerful statistical technique allowing researchers to synthesize the available evidence for a given research question using standardized (comparable) effect sizes across studies. The sessions teach students how to compute treatment effects, how to compute effect sizes based on correlational studies, how to address questions such as what is the association of bullying victimization with depression? The module will be useful for students who seek to draw statistical conclusions in a standardized manner from literature reviews they are conducting. 
11:00 
Factor Analysis
Finished
This module introduces the statistical techniques of Exploratory and Confirmatory Factor Analyses. Exploratory Factor Analysis (EFA) is used to uncover the latent structure (dimensions) of a set of variables. It reduces the attribute space from a larger number of variables to a smaller number of factors. Confirmatory Factor Analysis (CFA) examines whether collected data correspond to a model of what the data are meant to measure. STATA will be introduced as a powerful tool to conduct confirmatory factor analysis. A brief introduction will be given to confirmatory factor analysis and structural equation modelling.

14:00 
Public Policy Analysis
Finished
The analysis of policy depends on many disciplines and techniques and so is difficult for many researchers to access. This module provides a mixed perspective on policy analysis, taking both an academic and a practitioner perspective. This is because the same tools and techniques can be used in academic research on policy options and change as those used in practice in a policy environment. This course is provided as three 2 hour sessions delivered as a mix of lectures and seminars. No direct analysis work will be done in the sessions themselves, but some sample data and questions will be provided for students who wish to take the material into practice. 
Meta Analysis
Finished
In this module students will be introduced to metaanalysis, a powerful statistical technique allowing researchers to synthesize the available evidence for a given research question using standardized (comparable) effect sizes across studies. The sessions teach students how to compute treatment effects, how to compute effect sizes based on correlational studies, how to address questions such as what is the association of bullying victimization with depression? The module will be useful for students who seek to draw statistical conclusions in a standardized manner from literature reviews they are conducting. 

Factor Analysis
Finished
This module introduces the statistical techniques of Exploratory and Confirmatory Factor Analyses. Exploratory Factor Analysis (EFA) is used to uncover the latent structure (dimensions) of a set of variables. It reduces the attribute space from a larger number of variables to a smaller number of factors. Confirmatory Factor Analysis (CFA) examines whether collected data correspond to a model of what the data are meant to measure. STATA will be introduced as a powerful tool to conduct confirmatory factor analysis. A brief introduction will be given to confirmatory factor analysis and structural equation modelling.

Tuesday 10 March 2020
14:00 
Secondary Data Analysis
Finished
Using secondary data (that is, data collected by someone else, usually a government agency or large research organisation) has a number of advantages in social science research: sample sizes are usually larger than can be achieved by primary data collection, samples are more nearly representative of the populations they are drawn from, and using secondary data for a research project often represents significant savings in time and money. This short course, taught by Dr Deborah Wiltshire of the UK Data Archive, will discuss the advantages and limitations of using secondary data for research in the social sciences, and will introduce students to the wide range of available secondary data sources. The course is based in a computer lab; students will learn how to search online for suitable secondary data by browsing the database of the UK Data Archive. 
Wednesday 11 March 2020
09:30 
Multilevel Modelling
Finished
In this module, students will be introduced to multilevel modelling, also known as hierarchical linear modelling. MLM allows the user to analyse how outcomes are influenced by factors acting at multiple levels. So, for example, we might conceptualise children's educational process as being influenced by individual or familylevel factors, as well as by factors operating at the level of the school or the neighbourhood. Similarly, outcomes for prisoners might be influenced by individual and/or familylevel characteristics, as well as by the characteristics of the prison in which they are detained.

12:00 
A Critical Analysis of Null Hypothesis Testing and its Alternatives (Including Bayesian Analysis)
Finished
This course will provide a detailed critique of the methods and philosophy of the Null Hypothesis Significance Testing (NHST) approach to statistics which is currently dominant in social and biomedical science. We will briefly contrast NHST with alternatives, especially with Bayesian methods. We will use some computer code (Matlab and R) to demonstrate some issues. However, we will focus on the big picture rather on the implementation of specific procedures. 
14:00 
Multilevel Modelling
Finished
In this module, students will be introduced to multilevel modelling, also known as hierarchical linear modelling. MLM allows the user to analyse how outcomes are influenced by factors acting at multiple levels. So, for example, we might conceptualise children's educational process as being influenced by individual or familylevel factors, as well as by factors operating at the level of the school or the neighbourhood. Similarly, outcomes for prisoners might be influenced by individual and/or familylevel characteristics, as well as by the characteristics of the prison in which they are detained.

Monday 16 March 2020
10:00 
Evaluation Methods
CANCELLED
This course aims to provide students with a range of specific technical skills that will enable them to undertake impact evaluation of policy. Too often policy is implemented but not fully evaluated. Without evaluation we cannot then tell what the short or longer term impact of a particular policy has been. On this course, students will learn the skills needed to evaluate particular policies and will have the opportunity to do some hands on data manipulation. A particular feature of this course is that it provides these skills in a real world context of policy evaluation. It also focuses primarily not on experimental evaluation (Random Control Trials) but rather quasiexperimental methodologies that can be used where an experiment is not desirable or feasible. Topics:

13:45 
Evaluation Methods
CANCELLED
This course aims to provide students with a range of specific technical skills that will enable them to undertake impact evaluation of policy. Too often policy is implemented but not fully evaluated. Without evaluation we cannot then tell what the short or longer term impact of a particular policy has been. On this course, students will learn the skills needed to evaluate particular policies and will have the opportunity to do some hands on data manipulation. A particular feature of this course is that it provides these skills in a real world context of policy evaluation. It also focuses primarily not on experimental evaluation (Random Control Trials) but rather quasiexperimental methodologies that can be used where an experiment is not desirable or feasible. Topics:

Tuesday 17 March 2020
10:00 
Evaluation Methods
CANCELLED
This course aims to provide students with a range of specific technical skills that will enable them to undertake impact evaluation of policy. Too often policy is implemented but not fully evaluated. Without evaluation we cannot then tell what the short or longer term impact of a particular policy has been. On this course, students will learn the skills needed to evaluate particular policies and will have the opportunity to do some hands on data manipulation. A particular feature of this course is that it provides these skills in a real world context of policy evaluation. It also focuses primarily not on experimental evaluation (Random Control Trials) but rather quasiexperimental methodologies that can be used where an experiment is not desirable or feasible. Topics:

13:30 
Evaluation Methods
CANCELLED
This course aims to provide students with a range of specific technical skills that will enable them to undertake impact evaluation of policy. Too often policy is implemented but not fully evaluated. Without evaluation we cannot then tell what the short or longer term impact of a particular policy has been. On this course, students will learn the skills needed to evaluate particular policies and will have the opportunity to do some hands on data manipulation. A particular feature of this course is that it provides these skills in a real world context of policy evaluation. It also focuses primarily not on experimental evaluation (Random Control Trials) but rather quasiexperimental methodologies that can be used where an experiment is not desirable or feasible. Topics:

Wednesday 18 March 2020
11:00 
Factor Analysis
Finished
This module introduces the statistical techniques of Exploratory and Confirmatory Factor Analyses. Exploratory Factor Analysis (EFA) is used to uncover the latent structure (dimensions) of a set of variables. It reduces the attribute space from a larger number of variables to a smaller number of factors. Confirmatory Factor Analysis (CFA) examines whether collected data correspond to a model of what the data are meant to measure. STATA will be introduced as a powerful tool to conduct confirmatory factor analysis. A brief introduction will be given to confirmatory factor analysis and structural equation modelling.

14:00 
Factor Analysis
Finished
This module introduces the statistical techniques of Exploratory and Confirmatory Factor Analyses. Exploratory Factor Analysis (EFA) is used to uncover the latent structure (dimensions) of a set of variables. It reduces the attribute space from a larger number of variables to a smaller number of factors. Confirmatory Factor Analysis (CFA) examines whether collected data correspond to a model of what the data are meant to measure. STATA will be introduced as a powerful tool to conduct confirmatory factor analysis. A brief introduction will be given to confirmatory factor analysis and structural equation modelling.

Wednesday 8 April 2020
09:00 
Introduction to Python
CANCELLED
This module introduces the use of Python, a free programming language originally developed for statistical data analysis. Students will learn:
This module is suitable for students who have no prior experience in programming, but participants will be assumed to have a good working knowledge of basic statistical techniques. 
16:00 
Introduction to Python
CANCELLED
This module introduces the use of Python, a free programming language originally developed for statistical data analysis. Students will learn:
This module is suitable for students who have no prior experience in programming, but participants will be assumed to have a good working knowledge of basic statistical techniques. 