skip to navigation skip to content

Reset

Filter by

Course type

Show only:


Show only:


Dates available




Places available




Theme






Filter search

Browse or search for courses


Showing courses 1-25 of 35
Courses per page: 10 | 25 | 50 | 100

This course will provide a detailed critique of the methods and philosophy of the Null Hypothesis Significance Testing (NHST) approach to statistics which is currently dominant in social and biomedical science. We will briefly contrast NHST with alternatives, especially with Bayesian methods. We will use some computer code (Matlab and R) to demonstrate some issues. However, we will focus on the big picture rather on the implementation of specific procedures.

Agent-Based Modelling with Netlogo new Self-taught Not bookable

NB. This module is mostly self-taught, with the option to take part in some Q&A sessions throughout the year.

Societies can be viewed as path-dependent dynamical systems in which the interactions between multiple heterogeneous actors, and the institutions and organisations they create, lead to complex overlapping patterns of change over different space and time-scales. Agent-based models are exploratory tools for trying to understand some of this complexity. They use computational methods to represent individual people, households, organisations, or other types of agent, and help to make explicit the potential consequences of hypotheses about the way people act, interact and engage with their environment. These types of models have been used in fields as diverse as Architecture, Archaeology, Criminology, Economics, Epidemiology, Geography, and Sociology, covering all kinds of topics including social networks and formation of social norms, spatial distribution of criminal activity, spread of disease, issues in health and welfare, warfare and disasters, behaviour in stock-markets, land-use change, farming,forestry, fisheries, traffic flow, planning and development of cities, flooding and water management. This course introduces a popular freely available software tool, Netlogo, which is accessible to those with no initial programming experience, and shows how to use it to develop a variety of simple models so that students would be able to see how it might apply to their own research.

Atlas.ti Thu 3 Feb 2022   09:00 [Places]

This course provides an introduction to the management and analysis of qualitative data using Atlas.ti. It is divided between pre-recorded lectures, in which you’ll learn the relevant strategies and techniques, and hands-on live practical sessions in Zoom, in which you will learn how to analyse qualitative data using the software.

The sessions will introduce participants to the following:

  • consideration of the advantages and limitations of using qualitative analysis software
  • setting-up a research project in Atlas.ti
  • use of Atlas.ti's menus and tool bars
  • importing and organising data
  • starting data analysis using Atlas.ti’s coding tools
  • exploring data using query and visualization tools

Please note: Atlas.ti for Mac will not be covered.

Basic Quantitative Analysis (BQA-5) Mon 24 Jan 2022   10:00   [More dates...] Not bookable

This module follows on from Foundations in Applied statistics, and will teach you the basics of common bivariate techniques (that is, techniques that examine the associations between two variables). The module is divided between lectures, in which you'll learn the relevant theory, and hands-on practical sessions, in which you will learn how to apply these techniques to the analysis of real data.

Techniques to be covered include:

  • Cross-tabulations
  • Scatterplots
  • Covariance and correlation
  • Nonparametric methods
  • Two-sample t-tests
  • ANOVA
  • Ordinary Least Squares (OLS)

For best results, students should expect to do a few hours of private study and spend a little extra time in the computer labs, in addition to coming to class.

1 other event...

Date Availability
Mon 24 Jan 2022 10:00 Not bookable
Conversation and Discourse Analysis Tue 15 Feb 2022   16:00 [Places]

NB. NOTES FOR INTERESTED STUDENTS

The course content for this year is under construction and will change. While the focus of the course will remain the same, the balance of the content between two types of analysis will change and hands-on tasks added to the curriculum.

The module will introduce students to the study of language use as a distinctive type of social practice. Attention will be focused primarily on the methodological and analytic principles of conversation analysis. (CA). However, it will explore the debates between CA and Critical Discourse Analysis (CDA), as a means of addressing the relationship between the study of language use and the study of other aspects of social life. It will also consider the roots of conversation analysis in the research initiatives of ethnomethodology, and the analysis of ordinary and institutional talk. It will finally consider the interface between CA and CDA.

Topics:

  • Session 1: The Roots of Conversation Analysis
  • Session 2: Ordinary Talk
  • Session 3: Institutional Talk
  • Session 4: Conversation Analysis and Critical Discourse Analysis
Diary Methodology Mon 7 Feb 2022   09:00 [Places]

This SSRMP module introduces solicited diaries as a qualitative data collection method. Diary methodology is a flexible and versatile tool which has been used across a variety of disciplines (e.g. public health, nursing, psychology, media studies, education, sociology).

Solicited diaries are particularly powerful in combination with qualitative interviews, enabling the remote collection of rich data on intimate or unobservable topic areas over a longer period of time. This multi-method approach, also known as the ‘diary-interview method’ (DIM), has been originally developed as an alternative to participant observation (see: Zimmerman, D. H., & Wieder, D. L. (1977). The Diary: Diary-Interview Method. Urban Life, 5(4), 479–498.), which makes it an especially attractive qualitative data collection method in Covid-19 times.

In addition to the engagement with pre-recorded videos on Moodle (covering diary methodology basics), you will get hands-on experience with designing your own qualitative diary (3 hours live workshop via Zoom) and trying out the role of a researcher as well as research participant over a 5-day period (teaming up with a module colleague and filling out each other’s diaries). We will reflect on these experiences and answer remaining questions in a final 1-hour live session via Zoom.

The module is suitable for anybody interested in learning more about the method and/or using solicited qualitative diaries in their own research projects.

Digital and Online Research Methods new Thu 20 Jan 2022   14:00 [Places]

Virtual Data Collection in the Time of COVID-19: Practical and Ethical Considerations

Doing data collection in the time of COVID-19 has required the adaptation of existing approaches. While face-to-face data collection is not feasible during the COVID-19 crisis, phone- and internet-based interviews offer an alternative means of collecting primary data. In this workshop, we discus key practical and ethical issues concerning virtual approaches to data collection. We provide practical examples drawing on two related research projects that took place in a lower-middle income context during the Covid-19 school closures.

Doing Multivariate Analysis (DMA 4) Fri 28 Jan 2022   10:00 Not bookable

This module will introduce you to the theory and practice of multivariate analysis, covering Ordinary Least Squares (OLS) and logistic regressions. You will learn how to read published results critically, to do simple multivariate modelling yourself , and to interpret and write about your results intelligently.

Half of the module is based in the lecture theatre, and covers the theory behind multivariate regression; the other half is lab-based, in which students will work through practical exercises using statistical software.

To get the most out of the course, you should also expect to spend some time between sessions having fun by building your own statistical models.

Ethnographic Methods Thu 3 Feb 2022   15:30 [Places]

This module is an introduction to ethnographic fieldwork and analysis and is intended for students in fields other than anthropology. It provides an introduction to contemporary debates in ethnography, and an outline of how selected methods may be used in ethnographic study.

The ethnographic method was originally developed in the field of social anthropology, but has grown in popularity across several disciplines, including sociology, geography, criminology, education and organization studies.

Ethnographic research is a largely qualitative method, based upon participant observation among small samples of people for extended periods. A community of research participants might be defined on the basis of ethnicity, geography, language, social class, or on the basis of membership of a group or organization. An ethnographer aims to engage closely with the culture and experiences of their research participants, to produce a holistic analysis of their fieldsite.

Session 1: The Ethnographic Method What is ethnography? Can ethnographic research and writing be objective? How does one conduct ethnographic research responsibly and ethically?

Session 2: Ethnography and/as Audio Shortly after the phonograph was invented, ethnographers began using audio recording to document the cultural practices they were researching. For some, it has served as a kind of scientific tool to gather evidence and generate archives of linguistic, musical, and other sonic practices; for many others, it has served as an essential tool for interviewing about any topic; and for other still, audio recording and re-composition offer new possibilities of what ‘writing culture’ means. What are the consequences of using audio recording in fieldwork? And what are the technical, ethical, and aesthetic dimensions of doing so?

Session 3: Visual Anthropology This session outlines the relation of ethnographic film to anthropology and ethnographic knowledge generally, looks at some examples of contemporary ethnographic film practice, and inquires into the possible utility of photography and video recording in the research process of ethnographic fieldwork in general. We continue the prior session’s consideration of some of the epistemological, theoretical, social, and ethical considerations that tend to arise around use of these audiovisual recording technologies in anthropological fieldwork and analysis.

Session 4: Relationships in the Field Ethnographic methodology and participant observation often involve researchers’ positioning in existing networks of social relations. This session is meant to help attendees manage interpersonal relationships with research participants from academic, political, and ethical perspectives. We will discuss when and why relationships in ethnographic fieldwork can be a reason for concern. We will reflect on the social distinctions that emerge when doing fieldwork with other people and their effects on researchers’ decision-making process. Finally, we will think through different fieldwork strategies when working with others, and how they impact the production of ethnographic knowledge.

Evaluation Methods Mon 28 Feb 2022   14:00 [Places]

This course aims to provide students with a range of specific technical skills that will enable them to undertake impact evaluation of policy. Too often policy is implemented but not fully evaluated. Without evaluation we cannot then tell what the short or longer term impact of a particular policy has been. On this course, students will learn the skills needed to evaluate particular policies and will have the opportunity to do some hands on data manipulation. A particular feature of this course is that it provides these skills in a real world context of policy evaluation. It also focuses primarily not on experimental evaluation (Random Control Trials) but rather quasi-experimental methodologies that can be used where an experiment is not desirable or feasible.

Topics:

  • Regression-based techniques
  • Evaluation framework and concepts
  • The limitations of regression based approaches and RCTs
  • Before/After, Difference in Difference (DID) methods
  • Computer exercise on difference in difference methods
  • Instrumental variables techniques
  • Regression discontinuity design.
Event History Analysis Mon 14 Mar 2022   09:00 [Places]

This course offers an introduction to event history analysis, which is a tool used for analyzing the occurrence and timing of events. Typical examples are life course transitions such as the transition to parenthood and partnership formation processes, labour market processes such as job promotions, mortality, and transitions to and from sickness and disability. The researcher may be interested in examining how the rate of a particular event varies over time or with individual characteristics, social conditions, or other factors. Event History Analysis lets the researcher handle censoring and truncation, include time-varying independent variables, account for unobserved heterogeneity (frailty), and so on. The course will rely on Stata as the main computing tool, but users of other statistical software could still benefit from the course. The course is taught through both lectures and lab sessions.

This course will introduce students to the approach called "Exploratory Data Analysis" (EDA) where the aim is to extract useful information from data, with an enquiring, open and sceptical mind. It is, in many ways, an antidote to many advanced modelling approaches, where researchers lose touch with the richness of their data. Seeing interesting patterns in the data is the goal of EDA, rather than testing for statistical significance. The course will also consider the recent critiques of conventional "significance testing" approaches that have led some journals to ban significance tests.

Students who take this course will hopefully get more out of their data, achieve a more balanced overview of data analysis in the social sciences.

  • To understand that the emphasis on statistical significance testing has obscured the goals of analysing data for many social scientists.
  • To discuss other ways in which the significance testing paradigm has perverted scientific research, such as through the replication crisis and fraud.
  • To understand the role of graphics in EDA
Factor Analysis Mon 28 Feb 2022   11:00 [Full]

This module introduces the statistical techniques of Exploratory and Confirmatory Factor Analyses. Exploratory Factor Analysis (EFA) is used to uncover the latent structure (dimensions) of a set of variables. It reduces the attribute space from a larger number of variables to a smaller number of factors. Confirmatory Factor Analysis (CFA) examines whether collected data correspond to a model of what the data are meant to measure. STATA will be introduced as a powerful tool to conduct confirmatory factor analysis. A brief introduction will be given to confirmatory factor analysis and structural equation modelling.

  • Session 1: Exploratory Factor Analysis Introduction
  • Session 2: Factor Analysis Applications
  • Session 3: CFA and Path Analysis with STATA
  • Session 4: Introduction to SEM and programming
Feminist Research Practice Wed 2 Feb 2022   14:00 [Full]

This series of workshops are aimed at students interested in interdisciplinary and feminist research practice. The course revolves around a simple query: what makes research feminist? It is the starting point to engage with classic and more contemporary writings on feminist knowledge production to answer some of the following questions: what are the ‘proper’ objects of feminist research? Who can do feminist research? Why do we do feminist research, and what is its relevance? Who do we cite in our research? We will have in-class discussions and hands-on assignments that will allow students to practice some of the main debates we will read about.

Foundations in Applied Statistics (FiAS-5) Mon 17 Jan 2022   10:00   [More dates...] Not bookable

This is an introductory course for students who have little or no prior training in statistics.

The module is divided between pre-recorded mini-lectures, in which you'll learn the relevant theory, and hands-on live practical sessions in Zoom, in which you will learn how to analyse real data using the statistical package, Stata.

You will learn:

  • The key features of quantitative analysis, and how it differs from other types of empirical analysis
  • The basics of formal hypothesis testing
  • Basic concepts: what is a variable? what is the distribution of a variable? and how can we best represent a distribution graphically?
  • Features of statistical distributions: measures of central tendency and dispersion
  • The normal distribution
  • Why statistical testing works
  • Statistical methods used to test simple hypotheses
  • How to use Stata

1 other event...

Date Availability
Mon 17 Jan 2022 10:00 Not bookable
Further Topics in Multivariate Analysis (FTMA) 1 Tue 8 Feb 2022   14:00   [More dates...] Not bookable

This module is an extension of the three previous modules in the Basic Statistics stream, and introduces more complex and nuanced aspects of the theory and practice of mutivariate analysis. Students will learn the theory behind the methods covered, how to implement them in practice, how to interpret their results, and how to write intelligently about their findings. Half of the module is based in the lecture theatre; the other half is lab-based, in which students will work through practical exercises using the statistical software Stata.

Topics covered include:

  • Interaction effects in regression models: how to estimate these and how to interpret them
  • Marginal effects from interacted models
  • Ordered and categorical discrete dependent variable models (ordered and multinomial logit and probit)

To get the most out of the course, you should also expect to spend some time between sessions building your own statistical models.

1 other event...

Date Availability
Tue 8 Feb 2022 14:00 Not bookable
Introduction to Empirical Research Thu 20 Jan 2022   14:00 [Places]

This module is for anyone considering studying on an SSRMP module but not sure which one/s to choose. It provides an overview of the research process and issues in research design. Through reflection on a broad overview of empirical research, the module aims to encourage students to consider where they may wish to develop their research skills and knowledge. The module will signpost the different modules, both quantitative and qualitative, offered by SSRMP and encourage students to consider what modules might be appropriate for their research and career development.

You will learn:

  • The research process and the different stages it might consist of
  • Issues related to research design
  • To consider what data you will need to address your research aims
  • To consider the best methods to collect and analyse your data
  • What modules are offered by SSRMP and how they might be appropriate to your needs
Introduction to Python Tue 1 Mar 2022   09:00 [Places]

This module introduces the use of Python, a free programming language originally developed for statistical data analysis. Students will learn:

  • Ways of reading data into Python
  • How to manipulate data in major data types
  • How to draw basic graphs and figures with Python
  • How to summarise data using descriptive statistics
  • How to perform basic inferential statistics


This module is suitable for students who have no prior experience in programming, but participants will be assumed to have a good working knowledge of basic statistical techniques.

Introduction to R Tue 18 Jan 2022   14:00 [Places]

This module introduces the use of R, a free programming language originally developed for statistical data analysis. In this course, we will use R through R Studio, a user-friendly interface. Students will learn:

  • Ways of reading data into R
  • How to manipulate data in major data types
  • How to draw basic graphs and figures with R
  • How to summarise data using descriptive statistics
  • How to perform basic inferential statistics


This module is suitable for students who have no prior experience in programming, but participants will be assumed to have a good working knowledge of basic statistical techniques.

For an online example of how R can be used: https://www.ssc.wisc.edu/sscc/pubs/RFR/RFR_Introduction.html'''

Introduction to Stata Tue 25 Jan 2022   14:00 [Places]

The course will provide students with an introduction to the popular and powerful statistics package Stata. Stata is commonly used by analysts in both the social and natural sciences, and is the statistics package used most widely by the SSRMC. You will learn:

  • How to open and manage a dataset in Stata
  • How to recode variables
  • How to select a sample for analysis
  • The commands needed to perform simple statistical analyses in Stata
  • Where to find additional resources to help you as you progress with Stata

The course is intended for students who already have a working knowledge of statistics - it's designed primarily as a ""second language"" course for students who are already familiar with another package, perhaps R or SPSS. Students who don't already have a working knowledge of applied statistics should look at courses in our Basic Statistics Stream.

Issues in Measurement: Validity and Reliability Wed 2 Feb 2022   14:00 [Places]

This short two-hour course will provide an introduction to measurement issues in the social sciences. We design questions (or "survey instruments") to gain information on the concepts we are researching. Two prime considerations in whether an instrument is effective are validity (does our instrument actually measure what we want it to measure?) and reliability (does our instrument give consistent results across a range of different situations?) Considerations of validity and reliability are important across many areas of social science, including the measurement of personality and mental health; attitudes; ability tests; substance use disorders; and cultural differences and similarities between various groups. The course will discuss the importance, concepts, and types of validity and reliability. We will also briefly look at some statistical techniques for validity and reliability checks: Cronbach’s Alpha, Kappa coefficient, and Factor Analysis.

Meta-Analysis Thu 10 Mar 2022   09:00 [Places]

In this module students will be introduced to meta-analysis, a powerful statistical technique allowing researchers to synthesize the available evidence for a given research question using standardized (comparable) effect sizes across studies. The sessions teach students how to compute treatment effects, how to compute effect sizes based on correlational studies, how to address questions such as what is the association of bullying victimization with depression? The module will be useful for students who seek to draw statistical conclusions in a standardized manner from literature reviews they are conducting.

Open Source Investigation for Academics new Tue 19 Oct 2021   17:30 In progress

Open Source Investigation for Academics is methodology course run by Cambridge’s Digital Verification Corps, in partnership with Cambridge’s Centre of Governance and Human Rights, Social Sciences Research Methods Programme and Cambridge Digital Humanities, as well as with the Citizen Evidence Lab at Amnesty International.

NB. Places on this module are extremely limited, so please only make a booking if you are able to attend all of the sessions.

Panel Data Analysis Mon 21 Feb 2022   09:00 Not bookable

This module provides an applied introduction to panel data analysis (PDA). Panel data are gathered by taking repeated observations from a series of research units (eg. individuals, firms) as they move through time. This course focuses primarily on panel data with a large number of research units tracked for a relatively small number of time points.

The module begins by introducing key concepts, benefits and pitfalls of PDA. Students are then taught how to manipulate and describe panel data in Stata. The latter part of the module introduces random and fixed effects panel models for continuous and dichotomous outcomes. The course is taught through a mixture of lectures and practical sessions designed to give students hands-on experience of working with real-world data from the British Household Panel Survey.

  • Introduction to PDA: Concepts and uses
  • Manipulating and describing panel data
  • An overview of random effects, fixed effects and ‘hybrid’ panel models
  • Panel models for dichotomous outcomes
Propensity Score Matching Wed 16 Feb 2022   09:00 [Places]

Propensity score matching (PSM) is a technique that simulates an experimental study in an observational data set in order to estimate a causal effect. In an experimental study, subjects are randomly allocated to “treatment” and “control” groups; if the randomisation is done correctly, there should be no differences in the background characteristics of the treated and non-treated groups, so any differences in the outcome between the two groups may be attributed to a causal effect of the treatment. An observational survey, by contrast, will contain some people who have been subject to the “treatment” and some people who have not, but they will not have not been randomly allocated to those groups. The characteristics of people in the treatment and control groups may differ, so differences in the outcome cannot be attributed to the treatment. PSM attempts to mimic the experimental situation trial by creating two groups from the sample, whose background characteristics are virtually identical. People in the treatment group are “matched” with similar people in the control group. The difference between the treatment and control groups in this case should may therefore more plausibly be attributed to the treatment itself. PSM is widely applied in many disciplines, including sociology, criminology, economics, politics, and epidemiology. The module covers the basic theory of PSM, the steps in the implementation (e.g. variable choice for matching and types of matching algorithms), and assessment of matching quality. We will also work through practical exercises using Stata, in which students will learn how to apply the technique to the analysis of real data and how to interpret the results.

[Back to top]