skip to navigation skip to content

All Social Sciences Research Methods Programme courses

Show:
Show only:

Showing courses 41-50 of 51
Courses per page: 10 | 25 | 50 | 100

Standard statistical techniques in the social sciences are good at uncovering relationships between variables, but less good at establishing whether these relationships are causal. If A and B are correlated, does that mean A "causes" B? That B "causes" A? Or could both A and B be driven by a third factor C?

Randomised controlled trials are a type of study often considered to be the gold standard in uncovering this kind of causality. Many students and early-career researchers avoid RCTs, assuming they are complex and expensive to run. However, that need not be the case. This module will explain the theory of RCTs, how they are implemented, and will encourage participants to think about how they might design an RCT in their own field of work.

Reading and Understanding Statistics Mon 28 Oct 2019   16:00 Finished

This module is for students who don’t plan to use quantitative methods in their own research, but who need to be able to read and understand published research using quantitative methods. You will learn how to interpret graphs, frequency tables and multivariate regression results, and to ask intelligent questions about sampling, methods and statistical inference. The module is aimed at complete beginners, with no prior knowledge of statistics or quantitative methods.

Research Ethics Mon 20 Jan 2020   15:00 [Places]

Ethics is becoming an increasingly important issue for all researchers and the aim of this session is to demonstrate the practical value of thinking seriously and systematically about what constitutes ethical conduct in social science research. The session will involve some small-group work.

Researching Organisations Fri 22 Nov 2019   11:00 Finished

This course provides an introduction to some of the methodological issues involved in researching organisations. Drawing on examples of studies carried out in a wide range of different types of organisation, the aim will be to explore practical strategies to overcome some of problems that are typically encountered in undertaking such studies.

NOTE: Strike action is taking place between 25 November and 4 December 2019. If the strike goes ahead, this module may be affected. Please see the 'latest news' section on the home page of the SSRMP website for more information.

Secondary Data Analysis Tue 10 Mar 2020   14:00 [Full]

Using secondary data (that is, data collected by someone else, usually a government agency or large research organisation) has a number of advantages in social science research: sample sizes are usually larger than can be achieved by primary data collection, samples are more nearly representative of the populations they are drawn from, and using secondary data for a research project often represents significant savings in time and money. This short course, taught by Dr Deborah Wiltshire of the UK Data Archive, will discuss the advantages and limitations of using secondary data for research in the social sciences, and will introduce students to the wide range of available secondary data sources. The course is based in a computer lab; students will learn how to search online for suitable secondary data by browsing the database of the UK Data Archive.

Social Network Analysis Wed 30 Jan 2019   09:00 Finished

This introductory course is for graduate students who have no prior training in social network analysis (SNA). In the morning, we overview SNA concepts and analyse key articles in the literature. In the afternoon, students learn to handle relational databases and code for SNA research using R.

Link to a key paper in the SNA literature: https://www.jstor.org/stable/2781822?Search=yes&resultItemClick=true&searchText=robust&searchText=action&searchText=padgett&searchUri=%2Faction%2FdoBasicSearch%3FQuery%3Drobust%2Baction%2Bpadgett&refreqid=search%3Ac4254643dc4499f2a9c8608f9e871d96&seq=1#page_scan_tab_contents

Structural Equation Modelling (Intensive) Wed 27 Feb 2019   09:00 Finished

This intensive one-day course on structural equation modelling will provide an introduction to SEM using the statistical software Stata. The aim of the course is to introduce structural equation modelling as an analytical framework and to familiarize participants with the applications of the technique in the social sciences.

The application of the structural equation modelling framework to a variety of social science research questions will be illustrated through examples of published papers. The examples used are drawn from very recent papers, as well as publications from the early days of the technique; some use path analysis using cross-national data, others confirmatory factor analysis, and other still full structural models, to test particular hypotheses. Some example papers may be found below, though they should not be treated as the gold standard, rather as an illustration of the variety of approaches and reporting techniques within SEM.

  • Duff, A., Boyle, E., Dunleavy, K., & Ferguson, J. (2004). The relationship between personality, approach to learning and academic performance. Personality and individual differences, 36(8), 1907-1920.
  • Garnier, M., & Hout, M. (1976). Inequality of educational opportunity in France and the United States. Social Science Research, 5(3), 225-246.
  • Helm, F., Müller-Kalthoff, H., Mukowski, R., & Möller, J. (2018). Teacher judgment accuracy regarding students' self-concepts: Affected by social and dimensional comparisons?. Learning and Instruction, 55, 1-12.
  • Parker, P. D., Jerrim, J., Schoon, I., & Marsh, H. W. (2016). A multination study of socioeconomic inequality in expectations for progression to higher education: The role of between-school tracking and ability stratification. American Educational Research Journal, 53(1), 6-32.

Students will engage in a critique of such examples, with the aim of gaining a better understanding of the SEM framework, as well as its application to real-life data. To further facilitate this application focus, the theoretical introduction will be accompanied by practical examples based on real, publicly-available data.

Survey Research and Design Mon 17 Feb 2020   15:00 [Full]

The module aims to provide students with an introduction to and overview of survey methods and its uses and limitations. It will introduce students both to some of the main theoretical issues involved in survey research (such as survey sampling, non-response and question wording) and to practicalities of the design and analysis of surveys. The module consists of three three-hour sessions, split between lectures and practical exercises.

At the start of the module, the theoretical aspects of designing surveys will feature more, and topics covered include: the background to and history of survey research (with examples mostly drawn from political polling); an overview of the issues involved in analysing data from surveys conducted by others and some practical advice on how to evaluate such data; issues of sampling, non-response and different ways of doing surveys; issues related to questionnaire design (question wording, answer options, etc.) and ethical considerations. These lectures are relevant for all students taking the module, irrespective of whether they will conduct surveys themselves or are 'passive' users of survey results.

As the module progresses the practical aspects of designing surveys will feature more, particularly issues directly related to questionnaires (and less on issues of sampling), such as the wording of questions, the order of questions, and the use of different answer options. Most of the exercises will be provided by the instructors, but there will also be opportunities for students to bring in examples of surveys they would like to develop for their own research (and participants in the sessions may be asked to answer each other's surveys as a pilot test). We encourage all students registered for the module to attend the more practical sessions, but it will be of most direct relevance to those who are using, or plan to use, surveys in their research.

Time Series Analysis (Intensive) Wed 19 Feb 2020   09:00 [Full]

This module introduces the time series techniques relevant to forecasting in social science research and computer implementation of the methods. Background in basic statistical theory and regression methods is assumed. Topics covered include time series regression, Vector Error Correction and Vector Autoregressive Models, Time-varying Volatility, and ARCH models. The study of applied work is emphasized in this non-specialist module. Topics include:

  • Introduction to Time Series: Time series and cross-sectional data; Components of a time series, Forecasting methods overview; Measuring forecasting accuracy, Choosing a forecasting technique
  • Time Series Regression; Modelling linear and nonlinear trend; Detecting autocorrelation; Modelling seasonal variation by using dummy variables
  • Stationarity; Unit Root test; Cointegration
  • Vector Error Correlation and Vector Autoregressive models; Impulse responses and variance decompositions
  • Time-varying volatility and ARCH models; GARCH models
Weighting and Imputation Mon 24 Feb 2020   13:00 [Places]

In order for the findings of statistical analysis to be generalisable, the sample on which the analysis is based should be representative of the population from which it is drawn. But it is well known that some groups are under-represented in social science surveys: they may be harder to contact in the first place, less likely to agree to participate in the survey, or less likely to answer particular questions even if they do agree to participate.

This short module will introduce students to the techniques used by survey statisticians to overcome these problems. Weighting is used to deal with the problem of certain groups being under-represented in the sample; imputation is used to deal with missing answers to individual questions. Students will learn how and why weighting and imputation work, and will be taken through practical lab-based exercises which will teach them how to work with secondary data containing weights or imputed values.

[Back to top]