skip to navigation skip to content

Graduate School of Life Sciences course timetable

Show:

Wed 21 Mar 2018 – Mon 19 Nov 2018

Now Today



Wednesday 21 March 2018

14:00
Statistics for Biologists in R new (8 of 8) Finished 14:00 - 17:00 8 Mill Lane, Lecture Room 5

This laptop only course is intended to provide a strong foundation in practical statistics and data analysis using the R software environment. The underlying philosophy of the course is to treat statistics as a practical skill rather than as a theoretical subject and as such the course focuses on methods for addressing real-life issues in the biological sciences.

There are three core goals for this course:

  1. Use R confidently for statistics and data analysis
  2. Be able to analyse datasets using standard statistical techniques
  3. Know which tests are and are not appropriate

R is a free, software environment for statistical and data analysis, with many useful features that promote and facilitate reproducible research.

In this course, we introduce the R language, and cover basic data manipulation and plotting. We then move on to explore classical statistical analysis techniques starting with simple hypothesis testing and building up to generalised linear model analysis. The focus of the course is on practical implementation of these techniques and developing robust statistical analysis skills rather than on the underlying statistical theory

After the course you should feel confident to be able to select and implement common statistical techniques using R and moreover know when, and when not, to apply these techniques.

Tuesday 10 April 2018

09:30
How to write an academic paper and get it published Finished 09:30 - 16:30 17 Mill Lane, Seminar Room B

The course takes an evidence-based approach to writing. Participants will learn that publishing is a game and the more they understand the rules of the game the higher their chances of becoming publishing authors. They will learn that writing an academic article and getting it published may help with their careers but it does not make them better researchers, or cleverer than they were before their paper was accepted; it simply means they have played the game well.

Suitable for GSLS postgraduates in any discipline who are keen to learn how to write academic papers and articles efficiently as well as more established researchers who have had papers rejected and are not really sure why.

If you want a better chance of your name on a paper, this is for you!

Trainer

Olivia Timbs is an award-winning editor and journalist with over 30 years' experience gained from working on national newspapers and for a range of specialist health and medical journals.

Cancellation and Non-attendance Policy Due to high demand we cannot accept cancellations for this course within 48 hours prior to the event. Any cancellations made after this time will be considered as a non-attendance. Participants who do not attend on the day will be subject to a £50 fee. By booking a place on the course you accept these terms.

Thursday 14 June 2018

09:30
How to write an academic paper and get it published Finished 09:30 - 16:30 17 Mill Lane, Seminar Room B

The course takes an evidence-based approach to writing. Participants will learn that publishing is a game and the more they understand the rules of the game the higher their chances of becoming publishing authors. They will learn that writing an academic article and getting it published may help with their careers but it does not make them better researchers, or cleverer than they were before their paper was accepted; it simply means they have played the game well.

Suitable for GSLS postgraduates in any discipline who are keen to learn how to write academic papers and articles efficiently as well as more established researchers who have had papers rejected and are not really sure why.

If you want a better chance of your name on a paper, this is for you!

Trainer

Olivia Timbs is an award-winning editor and journalist with over 30 years' experience gained from working on national newspapers and for a range of specialist health and medical journals.

Cancellation and Non-attendance Policy Due to high demand we cannot accept cancellations for this course within 48 hours prior to the event. Any cancellations made after this time will be considered as a non-attendance. Participants who do not attend on the day will be subject to a £50 fee. By booking a place on the course you accept these terms.

Monday 23 July 2018

09:00
The Art of Negotiation and Influence (GSLS) Finished 09:00 - 17:00 17 Mill Lane, Seminar Room B

A one day master class in communication from an external trainer who has previously been employed as a hostage negotiator and detective in the Metropolitan Police Force. Participants will gain a practical insight into how professional communicators communicate, and how it can be applied in everyday life.

At the end of the session participants will:

  • Know how to persuade and influence effectively
  • Understand how to have greater impact when communicating
  • Have practiced the fundamental tools of professional communicators

Topics:

  • Levels of communication
  • Trust
  • Stages of active listening
  • Non-judgmental language
  • Achieving win/win
  • Building rapport
  • Dos and don’ts

Please note that due to the popularity of this course any cancellations must be received by 10th July. Cancellation after this date, non-attendance or failure to attend for the full day will incur a cancellation fee of £50 and blocking from further attendance. Only book if you know you can come!

Monday 29 October 2018

10:00
Core Statistics with R Intro (1 of 8) Finished 10:00 - 13:00 Clinical School, E-learning 1, 2, 3 (Level 2)

This course is intended to provide a strong foundation in practical statistics and data analysis using the R software environment. The underlying philosophy of the course is to treat statistics as a practical skill rather than as a theoretical subject and as such the course focuses on methods for addressing real-life issues in the biological sciences.

There are three core goals for this course:

  1. Use R confidently for statistics and data analysis
  2. Be able to analyse datasets using standard statistical techniques
  3. Know which tests are and are not appropriate

R is a free, software environment for statistical and data analysis, with many useful features that promote and facilitate reproducible research.

In this course, we introduce the R language, and cover basic data manipulation and plotting. We then move on to explore classical statistical analysis techniques starting with simple hypothesis testing and building up to generalised linear model analysis. The focus of the course is on practical implementation of these techniques and developing robust statistical analysis skills rather than on the underlying statistical theory

After the course you should feel confident to be able to select and implement common statistical techniques using R and moreover know when, and when not, to apply these techniques.

The Engaged Researcher: The Story Collidor - Science Story Telling new Finished 10:00 - 16:30 Downing College, Howard Building

Stories weave together fact and emotion, helping people to understand the world. They can also be a powerful tool for you to share your research with the public.

This whole day workshop run by the internationally acclaimed Story Collider, will help you to understand how narrative can enrich your science engagement. Through a combination of creative techniques and empirical science, you will brainstorm, develop and refine your own research stories.

MRL Core Statistics (1 of 8) Finished 10:00 - 13:00 Clinical School, E-learning 1, 2, 3 (Level 2)

This course is intended to provide a strong foundation in practical statistics and data analysis using the R software environment. The underlying philosophy of the course is to treat statistics as a practical skill rather than as a theoretical subject and as such the course focuses on methods for addressing real-life issues in the biological sciences.

There are three core goals for this course:

  1. Use R confidently for statistics and data analysis
  2. Be able to analyse datasets using standard statistical techniques
  3. Know which tests are and are not appropriate

R is a free, software environment for statistical and data analysis, with many useful features that promote and facilitate reproducible research.

In this course, we introduce the R language, and cover basic data manipulation and plotting. We then move on to explore classical statistical analysis techniques starting with simple hypothesis testing and building up to generalised linear model analysis. The focus of the course is on practical implementation of these techniques and developing robust statistical analysis skills rather than on the underlying statistical theory

After the course you should feel confident to be able to select and implement common statistical techniques using R and moreover know when, and when not, to apply these techniques.

13:30
Core Statistics with R Intro (2 of 8) Finished 13:30 - 16:30 Clinical School, E-learning 1, 2, 3 (Level 2)

This course is intended to provide a strong foundation in practical statistics and data analysis using the R software environment. The underlying philosophy of the course is to treat statistics as a practical skill rather than as a theoretical subject and as such the course focuses on methods for addressing real-life issues in the biological sciences.

There are three core goals for this course:

  1. Use R confidently for statistics and data analysis
  2. Be able to analyse datasets using standard statistical techniques
  3. Know which tests are and are not appropriate

R is a free, software environment for statistical and data analysis, with many useful features that promote and facilitate reproducible research.

In this course, we introduce the R language, and cover basic data manipulation and plotting. We then move on to explore classical statistical analysis techniques starting with simple hypothesis testing and building up to generalised linear model analysis. The focus of the course is on practical implementation of these techniques and developing robust statistical analysis skills rather than on the underlying statistical theory

After the course you should feel confident to be able to select and implement common statistical techniques using R and moreover know when, and when not, to apply these techniques.

MRL Core Statistics (2 of 8) Finished 13:30 - 16:30 Clinical School, E-learning 1, 2, 3 (Level 2)

This course is intended to provide a strong foundation in practical statistics and data analysis using the R software environment. The underlying philosophy of the course is to treat statistics as a practical skill rather than as a theoretical subject and as such the course focuses on methods for addressing real-life issues in the biological sciences.

There are three core goals for this course:

  1. Use R confidently for statistics and data analysis
  2. Be able to analyse datasets using standard statistical techniques
  3. Know which tests are and are not appropriate

R is a free, software environment for statistical and data analysis, with many useful features that promote and facilitate reproducible research.

In this course, we introduce the R language, and cover basic data manipulation and plotting. We then move on to explore classical statistical analysis techniques starting with simple hypothesis testing and building up to generalised linear model analysis. The focus of the course is on practical implementation of these techniques and developing robust statistical analysis skills rather than on the underlying statistical theory

After the course you should feel confident to be able to select and implement common statistical techniques using R and moreover know when, and when not, to apply these techniques.

Thursday 1 November 2018

12:30
The Engaged Researcher: Public Engagement Seminar new Finished 12:30 - 14:00 17 Mill Lane, Seminar Room E

Come to this Public Engagement Seminar to hear about an inspirational project citizen science project from one of your colleagues in the University, Dr Andrew Conlan. This is also an opportunity to network with others interested in Public Engagement and to talk to a member of the Public Engagement Team.

Why not bring your lunch with you?

Monday 5 November 2018

10:00
Core Statistics with R Intro (3 of 8) Finished 10:00 - 13:00 Clinical School, E-learning 1, 2, 3 (Level 2)

This course is intended to provide a strong foundation in practical statistics and data analysis using the R software environment. The underlying philosophy of the course is to treat statistics as a practical skill rather than as a theoretical subject and as such the course focuses on methods for addressing real-life issues in the biological sciences.

There are three core goals for this course:

  1. Use R confidently for statistics and data analysis
  2. Be able to analyse datasets using standard statistical techniques
  3. Know which tests are and are not appropriate

R is a free, software environment for statistical and data analysis, with many useful features that promote and facilitate reproducible research.

In this course, we introduce the R language, and cover basic data manipulation and plotting. We then move on to explore classical statistical analysis techniques starting with simple hypothesis testing and building up to generalised linear model analysis. The focus of the course is on practical implementation of these techniques and developing robust statistical analysis skills rather than on the underlying statistical theory

After the course you should feel confident to be able to select and implement common statistical techniques using R and moreover know when, and when not, to apply these techniques.

MRL Core Statistics (3 of 8) Finished 10:00 - 13:00 Clinical School, E-learning 1, 2, 3 (Level 2)

This course is intended to provide a strong foundation in practical statistics and data analysis using the R software environment. The underlying philosophy of the course is to treat statistics as a practical skill rather than as a theoretical subject and as such the course focuses on methods for addressing real-life issues in the biological sciences.

There are three core goals for this course:

  1. Use R confidently for statistics and data analysis
  2. Be able to analyse datasets using standard statistical techniques
  3. Know which tests are and are not appropriate

R is a free, software environment for statistical and data analysis, with many useful features that promote and facilitate reproducible research.

In this course, we introduce the R language, and cover basic data manipulation and plotting. We then move on to explore classical statistical analysis techniques starting with simple hypothesis testing and building up to generalised linear model analysis. The focus of the course is on practical implementation of these techniques and developing robust statistical analysis skills rather than on the underlying statistical theory

After the course you should feel confident to be able to select and implement common statistical techniques using R and moreover know when, and when not, to apply these techniques.

13:30
Core Statistics with R Intro (4 of 8) Finished 13:30 - 16:30 Clinical School, E-learning 1, 2, 3 (Level 2)

This course is intended to provide a strong foundation in practical statistics and data analysis using the R software environment. The underlying philosophy of the course is to treat statistics as a practical skill rather than as a theoretical subject and as such the course focuses on methods for addressing real-life issues in the biological sciences.

There are three core goals for this course:

  1. Use R confidently for statistics and data analysis
  2. Be able to analyse datasets using standard statistical techniques
  3. Know which tests are and are not appropriate

R is a free, software environment for statistical and data analysis, with many useful features that promote and facilitate reproducible research.

In this course, we introduce the R language, and cover basic data manipulation and plotting. We then move on to explore classical statistical analysis techniques starting with simple hypothesis testing and building up to generalised linear model analysis. The focus of the course is on practical implementation of these techniques and developing robust statistical analysis skills rather than on the underlying statistical theory

After the course you should feel confident to be able to select and implement common statistical techniques using R and moreover know when, and when not, to apply these techniques.

MRL Core Statistics (4 of 8) Finished 13:30 - 16:30 Clinical School, E-learning 1, 2, 3 (Level 2)

This course is intended to provide a strong foundation in practical statistics and data analysis using the R software environment. The underlying philosophy of the course is to treat statistics as a practical skill rather than as a theoretical subject and as such the course focuses on methods for addressing real-life issues in the biological sciences.

There are three core goals for this course:

  1. Use R confidently for statistics and data analysis
  2. Be able to analyse datasets using standard statistical techniques
  3. Know which tests are and are not appropriate

R is a free, software environment for statistical and data analysis, with many useful features that promote and facilitate reproducible research.

In this course, we introduce the R language, and cover basic data manipulation and plotting. We then move on to explore classical statistical analysis techniques starting with simple hypothesis testing and building up to generalised linear model analysis. The focus of the course is on practical implementation of these techniques and developing robust statistical analysis skills rather than on the underlying statistical theory

After the course you should feel confident to be able to select and implement common statistical techniques using R and moreover know when, and when not, to apply these techniques.

15:00
How to Keep a Lab Notebook Finished 15:00 - 17:00 Department of Genetics, Room G6

Your lab notebook is one of the most important and precious objects you, as a scientist, will ever have. This course will explore how keeping an exemplary laboratory notebook is crucial to good scientific practice in lab research. The course will consist of a short talk, a chance to assess some examples of good and bad practice, with plenty of time for questions and discussion. You might like to bring along your own lab notebook for feedback. (Please note that issues relating to protection of Intellectual Property Rights will not be covered in this course).

Tuesday 6 November 2018

09:30
How to write an academic paper and get it published Finished 09:30 - 16:30 Postdoc Centre @ Mill Lane, Committee Room

The course takes an evidence-based approach to writing. Participants will learn that publishing is a game and the more they understand the rules of the game the higher their chances of becoming publishing authors. They will learn that writing an academic article and getting it published may help with their careers but it does not make them better researchers, or cleverer than they were before their paper was accepted; it simply means they have played the game well.

Suitable for GSLS postgraduates in any discipline who are keen to learn how to write academic papers and articles efficiently as well as more established researchers who have had papers rejected and are not really sure why.

If you want a better chance of your name on a paper, this is for you!

Trainer

Olivia Timbs is an award-winning editor and journalist with over 30 years' experience gained from working on national newspapers and for a range of specialist health and medical journals.

Wednesday 7 November 2018

10:00
The Engaged Researcher: Introduction to Public Engagement new Finished 10:00 - 13:00 17 Mill Lane, Seminar Room G

This short course covers the what, why and how of public engagement and communication. The course is for research staff and PhD students who want to gain the skills and confidence required to plan and deliver an impactful public engagement project.

Monday 12 November 2018

10:00
Core Statistics with R Intro (5 of 8) Finished 10:00 - 13:00 Clinical School, E-learning 1, 2, 3 (Level 2)

This course is intended to provide a strong foundation in practical statistics and data analysis using the R software environment. The underlying philosophy of the course is to treat statistics as a practical skill rather than as a theoretical subject and as such the course focuses on methods for addressing real-life issues in the biological sciences.

There are three core goals for this course:

  1. Use R confidently for statistics and data analysis
  2. Be able to analyse datasets using standard statistical techniques
  3. Know which tests are and are not appropriate

R is a free, software environment for statistical and data analysis, with many useful features that promote and facilitate reproducible research.

In this course, we introduce the R language, and cover basic data manipulation and plotting. We then move on to explore classical statistical analysis techniques starting with simple hypothesis testing and building up to generalised linear model analysis. The focus of the course is on practical implementation of these techniques and developing robust statistical analysis skills rather than on the underlying statistical theory

After the course you should feel confident to be able to select and implement common statistical techniques using R and moreover know when, and when not, to apply these techniques.

MRL Core Statistics (5 of 8) Finished 10:00 - 13:00 Clinical School, E-learning 1, 2, 3 (Level 2)

This course is intended to provide a strong foundation in practical statistics and data analysis using the R software environment. The underlying philosophy of the course is to treat statistics as a practical skill rather than as a theoretical subject and as such the course focuses on methods for addressing real-life issues in the biological sciences.

There are three core goals for this course:

  1. Use R confidently for statistics and data analysis
  2. Be able to analyse datasets using standard statistical techniques
  3. Know which tests are and are not appropriate

R is a free, software environment for statistical and data analysis, with many useful features that promote and facilitate reproducible research.

In this course, we introduce the R language, and cover basic data manipulation and plotting. We then move on to explore classical statistical analysis techniques starting with simple hypothesis testing and building up to generalised linear model analysis. The focus of the course is on practical implementation of these techniques and developing robust statistical analysis skills rather than on the underlying statistical theory

After the course you should feel confident to be able to select and implement common statistical techniques using R and moreover know when, and when not, to apply these techniques.

13:30
Core Statistics with R Intro (6 of 8) Finished 13:30 - 16:30 Clinical School, E-learning 1, 2, 3 (Level 2)

This course is intended to provide a strong foundation in practical statistics and data analysis using the R software environment. The underlying philosophy of the course is to treat statistics as a practical skill rather than as a theoretical subject and as such the course focuses on methods for addressing real-life issues in the biological sciences.

There are three core goals for this course:

  1. Use R confidently for statistics and data analysis
  2. Be able to analyse datasets using standard statistical techniques
  3. Know which tests are and are not appropriate

R is a free, software environment for statistical and data analysis, with many useful features that promote and facilitate reproducible research.

In this course, we introduce the R language, and cover basic data manipulation and plotting. We then move on to explore classical statistical analysis techniques starting with simple hypothesis testing and building up to generalised linear model analysis. The focus of the course is on practical implementation of these techniques and developing robust statistical analysis skills rather than on the underlying statistical theory

After the course you should feel confident to be able to select and implement common statistical techniques using R and moreover know when, and when not, to apply these techniques.

MRL Core Statistics (6 of 8) Finished 13:30 - 16:30 Clinical School, E-learning 1, 2, 3 (Level 2)

This course is intended to provide a strong foundation in practical statistics and data analysis using the R software environment. The underlying philosophy of the course is to treat statistics as a practical skill rather than as a theoretical subject and as such the course focuses on methods for addressing real-life issues in the biological sciences.

There are three core goals for this course:

  1. Use R confidently for statistics and data analysis
  2. Be able to analyse datasets using standard statistical techniques
  3. Know which tests are and are not appropriate

R is a free, software environment for statistical and data analysis, with many useful features that promote and facilitate reproducible research.

In this course, we introduce the R language, and cover basic data manipulation and plotting. We then move on to explore classical statistical analysis techniques starting with simple hypothesis testing and building up to generalised linear model analysis. The focus of the course is on practical implementation of these techniques and developing robust statistical analysis skills rather than on the underlying statistical theory

After the course you should feel confident to be able to select and implement common statistical techniques using R and moreover know when, and when not, to apply these techniques.

Tuesday 13 November 2018

09:30
The Engaged Researcher: Shooting Your Research Video new Finished 09:30 - 16:30 eLearning 3 - School of Clinical Medicine

Why is YouTube popular? Because people love watching videos. A video is a great way to spread the message of your research to different public audiences across the World! Attendees will be equipped with the skills needed to plan and shoot high quality footage for your very own research-video.

It is strongly recommended that you also attend The Engaged Researcher: Editing Your Research Video session.

Wednesday 14 November 2018

13:30
Core Statistics (1 of 6) Finished 13:30 - 16:30 8 Mill Lane, Lecture Room 10

This laptop only course is intended to provide a strong foundation in practical statistics and data analysis using the R software environment. The underlying philosophy of the course is to treat statistics as a practical skill rather than as a theoretical subject and as such the course focuses on methods for addressing real-life issues in the biological sciences.

There are three core goals for this course:

  1. Use R confidently for statistics and data analysis
  2. Be able to analyse datasets using standard statistical techniques
  3. Know which tests are and are not appropriate

R is a free, software environment for statistical and data analysis, with many useful features that promote and facilitate reproducible research.

In this course, we explore classical statistical analysis techniques starting with simple hypothesis testing and building up to generalised linear model analysis. The focus of the course is on practical implementation of these techniques and developing robust statistical analysis skills rather than on the underlying statistical theory

After the course you should feel confident to be able to select and implement common statistical techniques using R and moreover know when, and when not, to apply these techniques.

Friday 16 November 2018

13:30
Core Statistics (2 of 6) Finished 13:30 - 16:30 8 Mill Lane, Lecture Room 10

This laptop only course is intended to provide a strong foundation in practical statistics and data analysis using the R software environment. The underlying philosophy of the course is to treat statistics as a practical skill rather than as a theoretical subject and as such the course focuses on methods for addressing real-life issues in the biological sciences.

There are three core goals for this course:

  1. Use R confidently for statistics and data analysis
  2. Be able to analyse datasets using standard statistical techniques
  3. Know which tests are and are not appropriate

R is a free, software environment for statistical and data analysis, with many useful features that promote and facilitate reproducible research.

In this course, we explore classical statistical analysis techniques starting with simple hypothesis testing and building up to generalised linear model analysis. The focus of the course is on practical implementation of these techniques and developing robust statistical analysis skills rather than on the underlying statistical theory

After the course you should feel confident to be able to select and implement common statistical techniques using R and moreover know when, and when not, to apply these techniques.

Monday 19 November 2018

10:00
Core Statistics with R Intro (7 of 8) Finished 10:00 - 13:00 Clinical School, E-learning 1, 2, 3 (Level 2)

This course is intended to provide a strong foundation in practical statistics and data analysis using the R software environment. The underlying philosophy of the course is to treat statistics as a practical skill rather than as a theoretical subject and as such the course focuses on methods for addressing real-life issues in the biological sciences.

There are three core goals for this course:

  1. Use R confidently for statistics and data analysis
  2. Be able to analyse datasets using standard statistical techniques
  3. Know which tests are and are not appropriate

R is a free, software environment for statistical and data analysis, with many useful features that promote and facilitate reproducible research.

In this course, we introduce the R language, and cover basic data manipulation and plotting. We then move on to explore classical statistical analysis techniques starting with simple hypothesis testing and building up to generalised linear model analysis. The focus of the course is on practical implementation of these techniques and developing robust statistical analysis skills rather than on the underlying statistical theory

After the course you should feel confident to be able to select and implement common statistical techniques using R and moreover know when, and when not, to apply these techniques.

MRL Core Statistics (7 of 8) Finished 10:00 - 13:00 Clinical School, E-learning 1, 2, 3 (Level 2)

This course is intended to provide a strong foundation in practical statistics and data analysis using the R software environment. The underlying philosophy of the course is to treat statistics as a practical skill rather than as a theoretical subject and as such the course focuses on methods for addressing real-life issues in the biological sciences.

There are three core goals for this course:

  1. Use R confidently for statistics and data analysis
  2. Be able to analyse datasets using standard statistical techniques
  3. Know which tests are and are not appropriate

R is a free, software environment for statistical and data analysis, with many useful features that promote and facilitate reproducible research.

In this course, we introduce the R language, and cover basic data manipulation and plotting. We then move on to explore classical statistical analysis techniques starting with simple hypothesis testing and building up to generalised linear model analysis. The focus of the course is on practical implementation of these techniques and developing robust statistical analysis skills rather than on the underlying statistical theory

After the course you should feel confident to be able to select and implement common statistical techniques using R and moreover know when, and when not, to apply these techniques.

13:30
Core Statistics with R Intro (8 of 8) Finished 13:30 - 16:30 Clinical School, E-learning 1, 2, 3 (Level 2)

This course is intended to provide a strong foundation in practical statistics and data analysis using the R software environment. The underlying philosophy of the course is to treat statistics as a practical skill rather than as a theoretical subject and as such the course focuses on methods for addressing real-life issues in the biological sciences.

There are three core goals for this course:

  1. Use R confidently for statistics and data analysis
  2. Be able to analyse datasets using standard statistical techniques
  3. Know which tests are and are not appropriate

R is a free, software environment for statistical and data analysis, with many useful features that promote and facilitate reproducible research.

In this course, we introduce the R language, and cover basic data manipulation and plotting. We then move on to explore classical statistical analysis techniques starting with simple hypothesis testing and building up to generalised linear model analysis. The focus of the course is on practical implementation of these techniques and developing robust statistical analysis skills rather than on the underlying statistical theory

After the course you should feel confident to be able to select and implement common statistical techniques using R and moreover know when, and when not, to apply these techniques.

MRL Core Statistics (8 of 8) Finished 13:30 - 16:30 Clinical School, E-learning 1, 2, 3 (Level 2)

This course is intended to provide a strong foundation in practical statistics and data analysis using the R software environment. The underlying philosophy of the course is to treat statistics as a practical skill rather than as a theoretical subject and as such the course focuses on methods for addressing real-life issues in the biological sciences.

There are three core goals for this course:

  1. Use R confidently for statistics and data analysis
  2. Be able to analyse datasets using standard statistical techniques
  3. Know which tests are and are not appropriate

R is a free, software environment for statistical and data analysis, with many useful features that promote and facilitate reproducible research.

In this course, we introduce the R language, and cover basic data manipulation and plotting. We then move on to explore classical statistical analysis techniques starting with simple hypothesis testing and building up to generalised linear model analysis. The focus of the course is on practical implementation of these techniques and developing robust statistical analysis skills rather than on the underlying statistical theory

After the course you should feel confident to be able to select and implement common statistical techniques using R and moreover know when, and when not, to apply these techniques.