skip to navigation skip to content

Reset

Filter by

Course type

Show only:



Dates available




Places available




Theme






Filter search

Browse or search for courses


Showing courses 1-25 of 33
Courses per page: 10 | 25 | 50 | 100

This course will provide a detailed critique of the methods and philosophy of the Null Hypothesis Significance Testing (NHST) approach to statistics which is currently dominant in social and biomedical science. We will briefly contrast NHST with alternatives, especially with Bayesian methods. We will use some computer code (Matlab and R) to demonstrate some issues. However, we will focus on the big picture rather on the implementation of specific procedures.

Atlas.ti new Wed 5 Feb 2020   14:00 [Places]

These two sessions will provide a basic introduction to the management and analysis of qualitative data using Atlas.ti. The sessions will introduce participants to the following:

  • consideration of the advantages and limitations of using qualitative analysis software
  • setting-up a research project in Atlas.ti
  • the use of Atlas.ti's menus and tool bars
  • importing and organising data
  • starting data analysis using Atlas.ti’s coding tools
  • exploring data using query and visualization tools

Please note: Atlas.ti for Mac will not be covered.

Basic Quantitative Analysis (BQA Intensive) Wed 29 Jan 2020   09:00   [More dates...] Not bookable

This module follows on from Foundations in Applied statistics, and will teach you the basics of common bivariate techniques (that is, techniques that examine the associations between two variables). The module is divided between lectures, in which you'll learn the relevant theory, and hands-on practical sessions, in which you will learn how to apply these techniques to the analysis of real data.

Techniques to be covered include:

  • Cross-tabulations
  • Scatterplots
  • Covariance and correlation
  • Nonparametric methods
  • Two-sample t-tests
  • ANOVA
  • Ordinary Least Squares (OLS)

For best results, students should expect to do a few hours of private study and spend a little extra time in the computer labs, in addition to coming to class.

2 other events...

Date Availability
Wed 13 Nov 2019 10:00 Not bookable
Wed 13 Nov 2019 10:00 Not bookable
Causal Inference in the Social Sciences Wed 4 Mar 2020   14:00 [Places]

The challenge of causal inference is ubiquitous in social science. Nearly every research project fundamentally is about causes and effects.

This introductory session will:

  • 1. Introduce three main approaches to elucidate causal relationship: structural equation models, causal directed acyclic graphs, and the counterfactual/potential outcome framework;
  • 2. Explain the common challenges in empirical research;
  • 3. Talk through some principles and intuition of several research designs that can help researchers make stronger claims for causality.

The emphasis is on setting out applications of each approach, along with pros and cons, so that participants understand when a particular design may be more or less suitable to a research problem.

Conversation and Discourse Analysis Tue 21 Jan 2020   16:00 [Places]

The module will introduce students to the study of language use as a distinctive type of social practice. Attention will be focused primarily on the methodological and analytic principles of conversation analysis. (CA). However, it will explore the debates between CA and Critical Discourse Analysis (CDA), as a means of addressing the relationship between the study of language use and the study of other aspects of social life. It will also consider the roots of conversation analysis in the research initiatives of ethnomethodology, and the analysis of ordinary and institutional talk. It will finally consider the interface between CA and CDA.

Topics:

  • Session 1: The Roots of Conversation Analysis
  • Session 2: Ordinary Talk
  • Session 3: Institutional Talk
  • Session 4: Conversation Analysis and Critical Discourse Analysis
Doing Multivariate Analysis (DMA-1) Mon 25 Nov 2019   10:00   [More dates...] Not bookable

This module will introduce you to the theory and practice of multivariate analysis, covering Ordinary Least Squares (OLS) and logistic regressions. You will learn how to read published results critically, to do simple multivariate modelling yourself, and to interpret and write about your results intelligently.

Half of the module is based in the lecture theatre, and covers the theory behind multivariate regression; the other half is lab-based, in which students will work through practical exercises using statistical software.

To get the most out of the course, you should also expect to spend some time between sessions having fun by building your own statistical models.

NOTE: Strike action is taking place between 25 November and 4 December 2019. If the strike goes ahead, this module will be affected. Please see the 'latest news' section on the home page of the SSRMP website for more information.

3 other events...

Date Availability
Wed 27 Nov 2019 10:00 Not bookable
Wed 27 Nov 2019 10:00 Not bookable
Fri 14 Feb 2020 09:00 Not bookable
Doing Qualitative Interviews Mon 11 Nov 2019   14:00 In progress

Face-to-face interviews are used to collect a wide range of information in the social sciences. They are appropriate for the gathering of information on individual and institutional patterns of behaviour; complex histories or processes; identities and cultural meanings; routines that are not written down; and life-history events. Face-to-face interviews thus comprise an appropriate method to generate information on individual behaviour, the reasons for certain patterns of acting and talking, and the type of connection people have with each other.

The first session provides an overview of interviewing as a social research method, then focuses on the processes of organising and conducting qualitative interviews. The second session explores the ethics and practical constraints of interviews as a research method, particularly relevant when attempting to engage with marginalised or stigmatised communities. The third session focuses on organisation and analysis after interviews, including interpretation through coding and close reading. This session involves practical examples from qualitative analysis software. The final session provides an opportunity for a hands-on session, to which students should bring their interview material (at whatever stage of the process: whether writing interview questions, coding or analysing data) in order to receive advice and support in taking the interview material/data to the next stage of the research process.

Topics:

1. Conducting qualitative interviews

2. Ethics and practical constraints

3. Practical session: interpretation and analysis

NOTE: Strike action is taking place between 25 November and 4 December 2019. If the strike goes ahead, this module will be affected. Please see the 'latest news' section on the home page of the SSRMP website for more information.

Ethics in Data Collection and Use Mon 27 Jan 2020   13:00 [Places]

This is an introductory course for students whose research involves collecting, storing or analysing data using networked digital devices. Unless your research data is only collected using pen and paper or tape recorders and is written up on a manual typewriter, this course will be relevant to you. If you are planning to collect data online through either public or private communications, or you intend to share or publish data collected by other means it will be essential.

Ethnographic Methods Tue 4 Feb 2020   15:30 [Places]

This module is an introduction to ethnographic fieldwork and analysis and is intended for students in fields other than anthropology. It provides an introduction to contemporary debates in ethnography, and an outline of how selected methods may be used in ethnographic study.

The ethnographic method was originally developed in the field of social anthropology, but has grown in popularity across several disciplines, including sociology, geography, criminology, education and organization studies.

Ethnographic research is a largely qualitative method, based upon participant observation among small samples of people for extended periods. A community of research participants might be defined on the basis of ethnicity, geography, language, social class, or on the basis of membership of a group or organization. An ethnographer aims to engage closely with the culture and experiences of their research participants, to produce a holistic analysis of their fieldsite.


Session 1: The Ethnographic Method
What is ethnography? Can ethnographic research and writing be objective? How does one conduct ethnographic research responsibly and ethically?

Session 2: Photography and Audio Recording in Ethnographic Work
What kinds of audiovisual equipment, and practices of photography and sound recording, can be used to support an ethnographer’s research process? What kinds of the epistemological, theoretical, social, and ethical considerations tend to arise around possible use of these technologies in anthropological fieldwork and analysis?

Session 3: Relationships in the Field
Ethnographic methodology and participant observation often involve researchers’ positioning in existing networks of social relations. This session is meant to help attendees manage interpersonal relationships with research participants from academic, political, and ethical perspectives. We will discuss when and why relationships in ethnographic fieldwork can be a reason for concern. We will reflect on the social distinctions that emerge when doing fieldwork with other people and their effects on researchers’ decision-making process. Finally, we will think through different fieldwork strategies when working with others, and how they impact the production of ethnographic knowledge.

Session 4: Defining the Fieldsite
This session is meant to equip attendees with the practical skill of how to determine, or work with, the limits of the fieldsite. Drawing on reflections on the challenges of working across sprawling geographical fields, as well as more enclosed geographical sites, we will discuss strategies for either strategically bounding the seemingly infinite fieldsite, or letting the boundaries of an already limited one work for you. We will also discuss how this methodological decision might impact the theoretical insights that emerge from a period of fieldwork, as well as how it impacts the interview process, methods of participant observation, and strategies for developing relationships with gatekeepers and interlocutors

PLEASE NOTE: Update on additional teaching - we have now scheduled the two additional sessions on 18 and 25 February. Further information on their content will follow.

Evaluation Methods Mon 16 Mar 2020   10:00 [Places]

This course aims to provide students with a range of specific technical skills that will enable them to undertake impact evaluation of policy. Too often policy is implemented but not fully evaluated. Without evaluation we cannot then tell what the short or longer term impact of a particular policy has been. On this course, students will learn the skills needed to evaluate particular policies and will have the opportunity to do some hands on data manipulation. A particular feature of this course is that it provides these skills in a real world context of policy evaluation. It also focuses primarily not on experimental evaluation (Random Control Trials) but rather quasi-experimental methodologies that can be used where an experiment is not desirable or feasible.

Topics:

  • Regression-based techniques
  • Evaluation framework and concepts
  • The limitations of regression based approaches and RCTs
  • Before/After, Difference in Difference (DID) methods
  • Computer exercise on difference in difference methods
  • Instrumental variables techniques
  • Regression discontinuity design.
Event History Analysis new Mon 2 Mar 2020   09:00 [Places]

This course offers an introduction to event history analysis, which is a tool used for analyzing the occurrence and timing of events. Typical examples are life course transitions such as the transition to parenthood and partnership formation processes, labour market processes such as job promotions, mortality, and transitions to and from sickness and disability. The researcher may be interested in examining how the rate of a particular event varies over time or with individual characteristics, social conditions, or other factors. Event History Analysis lets the researcher handle censoring and truncation, include time-varying independent variables, account for unobserved heterogeneity (frailty), and so on. The course will rely on Stata as the main computing tool, but users of other statistical software could still benefit from the course. The course is taught through both lectures and lab sessions.

This course will introduce students to the approach called "Exploratory Data Analysis" (EDA) where the aim is to extract useful information from data, with an enquiring, open and sceptical mind. It is, in many ways, an antidote to many advanced modelling approaches, where researchers lose touch with the richness of their data. Seeing interesting patterns in the data is the goal of EDA, rather than testing for statistical significance. The course will also consider the recent critiques of conventional "significance testing" approaches that have led some journals to ban significance tests.

Students who take this course will hopefully get more out of their data, achieve a more balanced overview of data analysis in the social sciences.

  • To understand that the emphasis on statistical significance testing has obscured the goals of analysing data for many social scientists.
  • To discuss other ways in which the significance testing paradigm has perverted scientific research, such as through the replication crisis and fraud.
  • To understand the role of graphics in EDA
Factor Analysis Mon 2 Mar 2020   11:00 [Full]

This module introduces the statistical techniques of Exploratory and Confirmatory Factor Analyses. Exploratory Factor Analysis (EFA) is used to uncover the latent structure (dimensions) of a set of variables. It reduces the attribute space from a larger number of variables to a smaller number of factors. Confirmatory Factor Analysis (CFA) examines whether collected data correspond to a model of what the data are meant to measure. STATA will be introduced as a powerful tool to conduct confirmatory factor analysis. A brief introduction will be given to confirmatory factor analysis and structural equation modelling.

  • Session 1: Exploratory Factor Analysis Introduction
  • Session 2: Factor Analysis Applications
  • Session 3: CFA and Path Analysis with STATA
  • Session 4: Introduction to SEM and programming
Foundations in Applied Statistics (FiAS Intensive) Mon 27 Jan 2020   09:00 Not bookable

This is an introductory course for students who have little or no prior training in statistics. The module is divided between lectures, in which you'll learn the relevant theory, and hands-on practical sessions, in which you will learn how to analyze real data using the statistical package Stata. You will learn:

  • The key features of quantitative analysis, and how it differs from other types of empirical analysis
  • Basic concepts: what is a variable? what is the distribution of a variable? and how can we best represent a distribution graphically?
  • Features of statistical distributions: measures of central tendency and dispersion
  • The normal distribution
  • The basics of formal hypothesis testing
  • Why statistical testing works
  • Statistical methods used to test simple hypotheses
  • How to use Stata
Further Topics in Multivariate Analysis (FTMA) 1 Tue 11 Feb 2020   14:00   [More dates...] Not bookable

This module is an extension of the three previous modules in the Basic Statistics stream, and introduces more complex and nuanced aspects of the theory and practice of mutivariate analysis. Students will learn the theory behind the methods covered, how to implement them in practice, how to interpret their results, and how to write intelligently about their findings. Half of the module is based in the lecture theatre; the other half is lab-based, in which students will work through practical exercises using the statistical software Stata.

Topics covered include:

  • Interaction effects in regression models: how to estimate these and how to interpret them
  • Marginal effects from interacted models
  • Ordered and categorical discrete dependent variable models (ordered and multinomial logit and probit)

To get the most out of the course, you should also expect to spend some time between sessions building your own statistical models.

1 other event...

Date Availability
Tue 11 Feb 2020 14:00 Not bookable
Introduction to Python new Mon 27 Apr 2020   09:00 [Standby]

This module introduces the use of Python, a free programming language originally developed for statistical data analysis. Students will learn:

  • Ways of reading data into Python
  • How to manipulate data in major data types
  • How to draw basic graphs and figures with Python
  • How to summarise data using descriptive statistics
  • How to perform basic inferential statistics


This module is suitable for students who have no prior experience in programming, but participants will be assumed to have a good working knowledge of basic statistical techniques.

Introduction to R Tue 21 Jan 2020   14:00 [Full]

This module introduces the use of R, a free programming language originally developed for statistical data analysis. In this course, we will use R through R Studio, a user-friendly interface. Students will learn:

  • Ways of reading data into R
  • How to manipulate data in major data types
  • How to draw basic graphs and figures with R
  • How to summarise data using descriptive statistics
  • How to perform basic inferential statistics


This module is suitable for students who have no prior experience in programming, but participants will be assumed to have a good working knowledge of basic statistical techniques.

For an online example of how R can be used: https://www.ssc.wisc.edu/sscc/pubs/RFR/RFR_Introduction.html'''

Introduction to Stata Tue 28 Jan 2020   14:00   [More dates...] [Places]

The course will provide students with an introduction to the popular and powerful statistics package Stata. Stata is commonly used by analysts in both the social and natural sciences, and is the statistics package used most widely by the SSRMC. You will learn:

  • How to open and manage a dataset in Stata
  • How to recode variables
  • How to select a sample for analysis
  • The commands needed to perform simple statistical analyses in Stata
  • Where to find additional resources to help you as you progress with Stata

The course is intended for students who already have a working knowledge of statistics - it's designed primarily as a ""second language"" course for students who are already familiar with another package, perhaps R or SPSS. Students who don't already have a working knowledge of applied statistics should look at courses in our Basic Statistics Stream.

1 other event...

Date Availability
Tue 12 Nov 2019 14:00 In progress
Issues in Measurement: Validity and Reliability Mon 3 Feb 2020   14:00 [Places]

This short two-hour course will provide an introduction to measurement issues in the social sciences. We design questions (or "survey instruments") to gain information on the concepts we are researching. Two prime considerations in whether an instrument is effective are validity (does our instrument actually measure what we want it to measure?) and reliability (does our instrument give consistent results across a range of different situations?) Considerations of validity and reliability are important across many areas of social science, including the measurement of personality and mental health; attitudes; ability tests; substance use disorders; and cultural differences and similarities between various groups. The course will discuss the importance, concepts, and types of validity and reliability. We will also briefly look at some statistical techniques for validity and reliability checks: Cronbach’s Alpha, Kappa coefficient, and Factor Analysis.

Merging and Linking Data Sets Mon 2 Dec 2019   16:00 [Places]

Merging and linking data sets are a process that researchers often encounter. In most cohort studies and longitudinal data sets, data on the same respondents who were interviewed at various times may be stored in different files. Or, data on different respondents but were interviewed at the same time, such as mothers and their children, may also be stored in various files. In either case, we may want to merge/link the files together before performing further analyses. This course will discuss two different ways of combining data files: merge (one-to-one merging and one-to-many merging) and append, and will demonstrate how to use ‘merge’ and ‘append’ commands in Stata.

Meta Analysis Mon 9 Mar 2020   09:00 [Full]

In this module students will be introduced to meta-analysis, a powerful statistical technique allowing researchers to synthesize the available evidence for a given research question using standardized (comparable) effect sizes across studies. The sessions teach students how to compute treatment effects, how to compute effect sizes based on correlational studies, how to address questions such as what is the association of bullying victimization with depression? The module will be useful for students who seek to draw statistical conclusions in a standardized manner from literature reviews they are conducting.

Microsoft Access: Database Design and Use Tue 26 Nov 2019   14:00 [Places]

These two sessions will provide a basic introduction to the management and analysis of relational databases, using Microsoft Access and a set of historical datasets. The workshops will introduce participants to the following:

  • The use of Access’s menus and tool bars
  • Viewing and browsing data tables
  • Creating quick forms formulating queries
  • Developing queries using Boolean operators
  • Performing simple statistical operations
  • Linking tables and working with linked tables
  • Querying multiple tables
  • Data transformation.

NOTE: Strike action is taking place between 25 November and 4 December 2019. If the strike goes ahead, this module will be affected. Please see the 'latest news' section on the home page of the SSRMP website for more information.

Multilevel Modelling Wed 11 Mar 2020   09:30 [Full]

In this module, students will be introduced to multilevel modelling, also known as hierarchical linear modelling. MLM allows the user to analyse how outcomes are influenced by factors acting at multiple levels. So, for example, we might conceptualise children's educational process as being influenced by individual or family-level factors, as well as by factors operating at the level of the school or the neighbourhood. Similarly, outcomes for prisoners might be influenced by individual and/or family-level characteristics, as well as by the characteristics of the prison in which they are detained.

  • Introduction to Stata/MLM theory
  • Applications I - Random intercept models
  • Applications II - Random slope models
  • Applications III - Revision session/growth models
Panel Data Analysis (Intensive) Wed 26 Feb 2020   09:00 [Full]

This module provides an applied introduction to panel data analysis (PDA). Panel data are gathered by taking repeated observations from a series of research units (eg. individuals, firms) as they move through time. This course focuses primarily on panel data with a large number of research units tracked for a relatively small number of time points.

The module begins by introducing key concepts, benefits and pitfalls of PDA. Students are then taught how to manipulate and describe panel data in Stata. The latter part of the module introduces random and fixed effects panel models for continuous and dichotomous outcomes. The course is taught through a mixture of lectures and practical sessions designed to give students hands-on experience of working with real-world data from the British Household Panel Survey.

  • Introduction to PDA: Concepts and uses
  • Manipulating and describing panel data
  • An overview of random effects, fixed effects and ‘hybrid’ panel models
  • Panel models for dichotomous outcomes
Propensity Score Matching Wed 19 Feb 2020   09:00 [Places]

Propensity score matching (PSM) is a technique that simulates an experimental study in an observational data set in order to estimate a causal effect. In an experimental study, subjects are randomly allocated to “treatment” and “control” groups; if the randomisation is done correctly, there should be no differences in the background characteristics of the treated and non-treated groups, so any differences in the outcome between the two groups may be attributed to a causal effect of the treatment. An observational survey, by contrast, will contain some people who have been subject to the “treatment” and some people who have not, but they will not have not been randomly allocated to those groups. The characteristics of people in the treatment and control groups may differ, so differences in the outcome cannot be attributed to the treatment. PSM attempts to mimic the experimental situation trial by creating two groups from the sample, whose background characteristics are virtually identical. People in the treatment group are “matched” with similar people in the control group. The difference between the treatment and control groups in this case should may therefore more plausibly be attributed to the treatment itself. PSM is widely applied in many disciplines, including sociology, criminology, economics, politics, and epidemiology. The module covers the basic theory of PSM, the steps in the implementation (e.g. variable choice for matching and types of matching algorithms), and assessment of matching quality. We will also work through practical exercises using Stata, in which students will learn how to apply the technique to the analysis of real data and how to interpret the results.

[Back to top]