skip to navigation skip to content

Reset

Filter by

Course type

Show only:



Dates available




Places available




Theme



Filter search

Browse or search for courses


6 matching courses
Courses per page: 10 | 25 | 50 | 100


PLEASE NOTE The Bioinformatics Team are presently teaching as many courses live online, with tutors available to help you work through the course material on a personal copy of the course environment. We aim to simulate the classroom experience as closely as possible, with opportunities for one-to-one discussion with tutors and a focus on interactivity throughout.

Machine learning gives computers the ability to learn without being explicitly programmed. It encompasses a broad range of approaches to data analysis with applicability across the biological sciences. Lectures will introduce commonly used algorithms and provide insight into their theoretical underpinnings. In the practicals students will apply these algorithms to real biological data-sets using the R language and environment.

Please be aware that the course syllabus is currently being updated following feedback from the last event; therefore the agenda below will be subject to changes.

Please note that if you are not eligible for a University of Cambridge Raven account you will need to book or register your interest by linking here.

PLEASE NOTE The Bioinformatics Team are presently teaching as many courses live online, with tutors available to help you work through the course material on a personal copy of the course environment. We aim to simulate the classroom experience as closely as possible, with opportunities for one-to-one discussion with tutors and a focus on interactivity throughout.

This course provides a practical introduction to the writing of Python programs for the complete novice. Participants are lead through the core aspects of Python illustrated by a series of example programs. Upon completion of the course, attentive participants will be able to write simple Python programs and customize more complex code to fit their needs.

Course materials are available here.

Please note that the content of this course has recently been updated. This course now mostly focuses on core concepts including Python syntax, data structures and reading/writing files. Concepts and strategies for working more effectively with Python are now the focus of a new 2-days course, Data Science in Python.

Please note that if you are not eligible for a University of Cambridge Raven account you will need to book or register your interest by linking here.

EMBL-EBI: Network Analysis with Cytoscape (Online) Thu 14 Jan 2021   13:00 [Full]

PLEASE NOTE The Bioinformatics Team are presently teaching as many courses live online. We aim to simulate the classroom experience as closely as possible, with opportunities for one-to-one discussion with tutors and a focus on interactivity throughout.

This course provides an introduction to the basic theory and concepts of network analysis. Attendees will learn how to construct protein-protein interaction networks and subsequently use these to overlay large-scale data such as that obtained through RNA-Seq or mass-spec proteomics. The course will focus on giving attendees hands-on experience in the use of Cytoscape, an open source software platform for complex network analysis and visualization. The course will also access and analyse the data through Cytoscape apps, including IntAct.

Please note that if you are not eligible for a University of Cambridge Raven account you will need to book or register your interest by linking here.

PLEASE NOTE The Bioinformatics Team are presently teaching as many courses live online, with tutors to assist you with instant and personalised feedback and to help you to run/execute the scripts which we will be using during the course. We aim to simulate the classroom experience as closely as possible, with opportunities for one-to-one discussion with tutors and a focus on interactivity throughout.

R is one of the leading programming languages in Data Science. It is widely used to perform statistics, machine learning, visualisations and data analyses. It is an open source programming language so all the software we will use in the course is free. This course is an introduction to R designed for participants with no programming experience. We will start from scratch by introducing how to start programming in R and progress our way and learn how to read and write to files, manipulate data and visualise it by creating different plots - all the fundamental tasks you need to get you started analysing your data. During the course we will be working with one of the most popular packages in R; tidyverse that will allow you to manipulate your data effectively and visualise it to a publication level standard.

Please note that if you are not eligible for a University of Cambridge Raven account you will need to book or register your interest by linking here.

PLEASE NOTE The Bioinformatics Team are presently teaching as many courses live online. We aim to simulate the classroom experience as closely as possible, with opportunities for one-to-one discussion with tutors and a focus on interactivity throughout.

Day 1 will introduce you to next generation sequencing technologies (NGS) and how they work, providers, common bioinformatics workflows, standardised file types, quality control. This session will include an introduction to Galaxy. Galaxy is an open, web-based platform for data-intensive life science research that enables non-bioinformaticians to create, run, tune, and share their own bioinformatic analyses.

Day 2 will be hands-on practicals on using Galaxy to explore sequencing quality control, before and after removal of low quality samples. This forms the core of all NGS analyses and this day will conclude with how this data pipes into gene expression studies, variant calling and genome assemblies.

Please note that if you are not eligible for a University of Cambridge Raven account you will need to book or register your interest by linking here.

This 1-week course provides an introduction to data exploration of biological data. It provides a learning journey starting with learning about how we can automate processes that can be reproduced to analyse our biological data.

The course will begin with discussing what opportunities and challenges are associated with aspects of bioinformatics analyses. We will address a subset of them in greater detail in the central part of the course and provide time for participants to practise using some of the associated bioinformatics tools.

Focusing on solutions around handling biological data, we will cover programming in R, version control, statistical analyses, and data exploration. The R component of the course will cover from the foundations of programming in R to how to use some of the most popular R packages (dplyr and ggplot2) for data manipulation and visualisation. No prior R experience or previous knowledge of programming is required. At the end of the course we will address issues relating to reusability and reproducibility.

More information about the course can be found here.

Please note that if you are not eligible for a University of Cambridge Raven account you will need to book or register your interest by linking here.